RADOV Expardm:NTER

WHITES RADIO促 LOG

AM-FM-TV STATIONS -VIORLD-WIDE SHORT WAVE Over 14,000 Listings with 400 Changes

Build this Simple Preseledor to Upgrade Your Receiver - See Page 102

Transistor Audio Voltmeter - Make A Car Antenna Double in C-B • Programimed Electron Ray Tester for All "Magic Eyes" - AC-Operated Hearing Aid

New Model 161 UTILITY TESTER ${ }^{\text {® }}$ FOR REPAMRINGEALL Mール MOTORS•AUTOMOBILES•TV TUBES

 As an electrical trouble shooter the Model 161:

 As an electrical trouble shooter the Model 161:}

- Will rest Toasters, Irons, Broilers, Heating Pads, Clocks, Fans, Vacumm Cleaners, Refrigerators, Lamps, Fluorescents, Switches, Thermostals, etc.
- Will test all TV lubes including picture fubes) for open filoments and burned out tubes.
- Measures A.C. and D.C. Voltages,
(Both 110 Volt and 220 Volt lines).
- Will measure current consump. tion (amperes) while the appliance under test $\frac{\text { is }}{\text { Incorporates on }}$ sensitive directreading resistance range which will measure all resistances commonly used in electrical oppliances, motors, etc.

As an Automotive Tester the Model 161 will test:

 - Both 6 Volt and 12 Volt Storage Batteries - Generators - Starters Distributors - Ignition Cails - Regulators - Relays - Circuit Breakers - Cigarette Lighters - Stop Lights - Condensers - Directional Signal Systems - All Lamps and Bulbs - Fuses - Heating Systems - Horns - Also will locate poor grounds, breaks in wiring, poor connections, etc.

INCLUDED FREE!

This 56-page-book-practically a condensed course in electricity. learn by doing.
Just read the following partiol list of contents:

- What is electricity? - Simpinfed verslon of Ohms Law . What is
wattage? Simplined wateag wattage?. Simplined wattage leake age current, resistance and motors using a simplified trouble-shooing techniqu
- How to test all TV tubes; also simple procedure for determining whith specinc tube (or tubes) is causing
- How to trace trouble in the electrical circults and parts in automoblles and trucks.

Model 161 comes complete with above book and rest

You don't pay for the Model 161 until AFTER you have examined it in the privacy of your homel

Try it for 10 days before you buy. If completely satisfied then send $\$ 5.00$ and pay the balance at the rate of $\$ 5.00$ per month until the total price of $\mathbf{\$ 2 2 . 5 0}$ (plus small P.P and budget charge) is paid. If not completely satisfied, return to us, no explanation necessary.

accurate instrument co., inc.

Dept. D-258, 911 faile St., Bronx 59, N. Y.
 10 days and bolance at rate of $\$ 5$ per month until total price of $\$ 22.50$ (plus small P.P. and budget charge) is paid. If not satisfactory, I may
refurn for cancellation of account. refurn for cancellation of account.

Nome

Address
City__Z_Zone Zone \qquad Stote

RCA training at home can be the smartest investment you ever made

PLUS ALL THIS AT NO EXTRA COST...

15 KITS

to build a Multimeter, AM Receiver and Signal Generator. Kits contain new parts for experiments, inte. grated so as to demonstrate what you learn in the lessons and to help you develop technical skills. Each kit is fun to put together!

Also, comprehensive, fully-integrated home study courses in - Television Servicing - Color Television Automation Electronics - Transistors - Communicatrons Electronics - Computer Programming - Electronic Drafting. Stake out your future in electronics
with any one of this wide variety of courses. Practical work with the very first lesson! Pay-only-as-you-learn! No long-term contracts to sign! No monthly installments required. Pay only for one study group at a time, if and when you order it!

SEND FOR FREE HOME STUDY CATALOG TODAY!
$\left[\begin{array}{l}\text { RESIDENT SCHOOL COURSES } \\ \text { in Loe Angeles and Now York City oller } \\ \text { comprehenatve training in Tolovision and } \\ \text { Electronica. Day and Evening clasees. Free } \\ \text { Placement Service. Cetalogfree on request. }\end{array}\right]$

RCA INSTITUTES, INC.
A Service of Radio Corporation of America - 350 W .4 th St.. New York 14, N. Y. 610 S. Main St., Los Angeles 14 , Calif.

The Most Trusted Name in Electronics

RCA INSTITUTES, INC. Home Study School. Depp. RX. 43
A Service of Radio Corporation of Americ: 350 West Fourth Street, New York 14, N.'Y.
Without obligation, rush me the FREE 64-page illusurated booklet "Your Caveer in" Electroaict" describins your electronic horne study trainins program. No salesman will call.

Name.
Address.
City.
\qquad ...Zone...........State.

Veterans: Enter discharge date.
CANADIANS-Take divantage of these same RCA courses at no additional cone. No postage, no customs, no delay. Send coupon to: RCA Victor Company, Lid 5581 Royalmount Are., Moatreal 9, Quebec.

Your 1963 Buying Guide for Precision Made Radio Grystals and Electronic Equipment.

International Crystal Mig. Co
18 North Lee, Oklahoma City, Okla.
Rush 1963 FREE Catalog.
Name
Please Print
Address
City Zone State

FREE

BOTH.FREE WITH EVERY \$10 OROER

[^0]
INTERESTED IN EEECTRONICS?

Of course you are! And now you can be sure you get all the special S\&M Handbooks specially dedicated to your interest-and you'll get them automatically! No chance of missing a single issue. Here's your opportunity to build or add to your own special interest library-and save money, too.
Here's what you'll get during the course of a year:

S\&M ELECTRONICS GROUP

Electrical Handbook Radio-TV Experimenter (2 issues)
Elementary Electronics Home Appliance Repairs Junior Mechanics Handbook
Surplus \& Salvage Projects

Think of it! 13 big S\&M Handbooks. They sell by mail for $\$ 1$ each, but you save more than 26% when you order your special S\&M Electronics Group subscription. Do it now-use the coupon below.

13 Big S\&M Handbooks only $\$ 9.50$

COYNE offers

 Training in RADIO Spare Time AT HOME

The future is YOURS in TELEVISION! A fabulous field-good pay-fascinating work-a prosperous future in a good job, or independence in your own business!

Coyne brings you MODERN-QUALITY Television Home Training; training designed to meet Coyne standards at truly lowest cost - you pay for training only - no costly "put together kits." Not an old Radio Course with Television "tacked on." Here is MODERN TELEEISION TRAINING including Radio, UHF and Color TV. No Radio background or previous experience needed. Personal guidance by Coyne Staff. Practical Job Guides to show you how to do actual servicing jobs-make money early in course. Free Lifetime Employment Service to Graduates.

CHARTEREO AS AN EDUCATIONAL INSTITUTION NOT FOR PROFIT
1501 W, Congress Parkway . Chicago 7, Dept. 43.H9

B. w. COokE, J. Prmident

Coyne-the tuatiturion beaind thin train.
ing... the torgeat, oldest, best equ ipped
res idemtial wehool of its hind. Fownded lisg.

I Dept. 43.H9, Now Coyne Building
I 1501 W Congres: Parky., Chicago 7, III.
I Send Free Book and details on how I can get I Coyne Quality Television Home Training at low cost and easy terms.

Name
Address
I City \qquad

Home Trainina Division

and full details, including easy Payment Plan. No obligation, no solesman will call.

COYNE Television

Send Coupon or write to address below for Free Book

Haw to "AIM" a TV Anfenna
B. G. DAVIS

Garry Winter. \qquad Editor-in-Chief Joe Daffron Managing Editór Al Heighington Art Editor
Leroy R. Kietzman

\qquad
Production Editor
BYRONG. WELSEDITOR
John L. Scherer Associate Editor
Johanna L. Pugni Assistant Editor
Anthony Maccarrone Art Associate
Delores Henkelman Production Assistant
Pat Luetkemeyer

\qquad
Production Assistant

Cover by Harold R. Stluka

JOEL DAVIS
\qquad
Assistant
Publisher
JOEL DAVIS Publisher

CONTENTS

COVER FEATURE
"Reading You 5x9 OM" 102
FOR HAMS, SWL's CB-ers \& TV-ers
Identify That DX 27
Car Antenna Doubles for Citizens Band 36
The Kit Parade 41
Junior Op-Orator 60
"Sweet-Tone" Transistor Radio to Build 73
A Mixer for Two RF Signals 82
Which Way Is Forward? 92
Filier-Tip 121
Beam Aimer 132
Attic Antenna System 135
FM DX: the Summer Sport 139
White's Radio Log 155
FOR THE AUDIOPHILE
Improving Amplifier Frequency Response Characteristics 30
Sound Control Operates Tope Deck 47
Stereo Console 54
Tronsistorized Amplifier 58
One-Transistor Tuner 95
Inexpensive Dictation Machine 99
Transistorized Audio Voltmeter 105
Broadcast Tuner 129
FOR THE EXPERIMENTER
Build The Amplagimik 33
How to Fix Your Own Radio 39
Build An Auto Rodio Booster 45
Shark Shocker 52
Chairside Hearing Aid 61
Electronic Photo Timer 69
Experimenter's Developmental Chassis 77
Getting Started in Model Radio Control 85
Super-Pro Electronic Flashgun 89
Toy Orgon 97
PERT Tester 109
Vibrator Power Supply 114
Anti-Snooper Alarm 117
Globe Radio 118
Basic Bugging Outfit 123
Build The loneer 127
DEPARTMENTS
Editorial 26
New Products 141
Free Literafure 145

How to Improve on SW Receiver . . . Page 102

Experimenter's Delight . . . Page 95

Stop Wasting Tape! . . . Page 47

latist SAMS BOOKS
 FOR EVERYONE IN ELECTRONIGS

USE THIS HANDY ORDER FORM

CB Radio Antenna Guidebook. If you're planning to buy CB equipment or want to impiove your present gear, here's the book you need on how to select and use the best antenna. Order CAH-1, only \$2.50Troubleshooting With the VOM-VTVM. Shows you exactly how to use these instruments for troubleshooting TV circuits. Details all measurement and analysis procedures. Order TWV-1, only $\$ 2.50$ TV Olagnosis and Repair. Practical servicing procedures and cures for typical TV circuit troubles, adapted from articles in PF REPORTER. Helps solve the most troublesome TV problems quickly. Order TOR-1, only
$\$ 1.50$
Fundamentals of Modern Semiconductors. Detailed explanation of solid-state physics, with a minimum of mathematics. Fully covers diode and transistor fundamentals, including the latest developments. Order FSK-1, only
$\$ 2.95$
Modern Communications Course Vol. 1. Radio Frequency Systems-gives you a complete understanding of transmitters, including design, operating principles and practices. Order MCN-1, only $\$ 4.95$
\square Fundamentals of Magnelic Amplifiers. The practical book for everyone working with saturable-core devices, such as those used in missiles, computers, industrial equipment, lab instruments. FMA-1, only $\$ 2.95$
\square Serviting Transistorized 2-Way Radio. Complete servicing techniques for transistorized 2-way designs used by the major manufacturers. Full troubleshooting and maintenance details. Order TRT-1, only. . \$2.95

- TV Servicing Guide, SGS-1............................... $\$ 2.00$
- How to Read Schematic Diagrams. 1.50

ABC's of Ultrasonics. ULT-1 1.95

- ABC's of Magnetism. AOM-1 1.95
\square ABC's of Clilzens Band Radio. ACR-1 1.95
- ABC's of Radlonavigatlon. ARN-1 1.95

0101 Ways to Use Your VOM \& VTVM. TEM-3 1.95
\square Troubteshooting With the Oscllloscope. TOS. 2.50

D Electronit Servicing for the Beginner. BSJ. 1 . 50

Transistor Substitution Handbook. SSH-3................ 1.50

FREE !
Ask for the Sams Booklist, describing over 200 Important books.
FREE!
Index to. Photofact. world's finest circult data on 53,000 TV \& radio models.

HOWARD W. SAMS \& CO., INC.
Order from any Electronic Parts Distributor. or mail to Howard W. Sams \& Co., Inc., Dept. D-143 $4300 \mathrm{~W}, 62 \mathrm{nd}$ St., Indianapolis 6, Ind.
Send books checked above. \$ \qquad enclosed
\square Send FREE Booklist.
Send Photofact Index
Name
Address
City \qquad Zone State

\qquad

Every photographer, whether his photos are for sale or show, knows high quality depends on the accuracy of his equipment. Here are two precision instruments that have met with the high standards set down by professional photographers.

Kit A-1 Supersensitive Light Meter

Uses the newest cadmium sulfide light cell to meosure light levels from 0 to 10,000 foot lomberts af ASA speeds of 3 to 25,000 . Used with movie or still comero, microscope, telescope, and os a densitometer. Computer gives F stops .7 to 90 and lists exposure time from $1 / 15,000 \mathrm{sec}$. to
8 hrs............ \$19.95

Kit A-3 Darkroom Meter (Improved)

This darkroom version thas the same sensitivity as the A. 1 Meter but has the added improvements of a much larger ($41 / 2^{\prime \prime}$) illuminated meter, a paper speed control knob for use with enlargers, and now has a new battery test switch. With this switch you can always check the mercury battery and know when to change it so you can always be assured of consistent readings. This meter is ideal for darkroom and studio applications where occuracy means savings.
$\$ 36.95$

It's Nèw - It's Big - It's Better Than Ever It's From the "World's Hi-Fi \& Electronics Shopping Center"
The exciting, all-new 1963 Lafayette Catalog features thousands of items for the audiophile, experimenter, technician, hobbyist, serviceman
... Citizens Band, Tape Recorders, Stereo Hi-Fi, Ham and Amateur Equipment, and much more. No Money Down on Lafayette's Budget Plan

ONLY LAFAYETTE OFFERS THESE OUTSTANDING EXTRAS: \checkmark Satisfaction guarantee or money refunded \vee lowest prices Vexclusive lafayette kits \vee largest stock selection V buy the easy-way with easy-pay...

Lafayette 24-watt Stereo amplifier

- 12-Watts per chan. nel
- Frequency Response 20-25,000 cps
- Complete Stereo Controls

Lafayette he-20C C.B. TRANSCEIVER
MAIL ORDER AND SALES CENTER
111 Jericho tuonplke, syosset, L. I., N. Y.

： 16 moniv IN THE CORNERS OF THE WORLD！
in TELEVISION，RADIO ELECTRONICS，RADAR，SONAR ONLY CHRISTY OFFERS COMPLETE TRAINING！ Investigate the Christy Complete Course．Why be satisfied with less： CTS Shop Method，Home Training makes learning easy，You learn by receive Comprehenslve training from the start．Can EARN AS YOU LEARN． You become qualified to onen your own Electronics Repair business or to gain high pay as a TV．Radio，Elec－ tronics，etc．，Technician．
19 TRAINING KITS INCLUDED
You recelve a Multis Tester，Osclllator， erntor，Electronte Timer．Regenerative Rallio． $27^{\circ \prime}$ TV set（optional）and other valuable testing equipment．FREE BOOK and TwO FREE GOSSONS yours for the CHRISTY TRADES SCHOOL
\qquad
CHRISTY TRADES SCNOOL，Dept．T．711
3214 W . Lawrenće Ave., Chicago 25, III.
Please send me the 3 FREE BOOKS and Speclal Form for
PAYINQ LATER from EARNINGS MADE WHILE LEARNING.
NAME
. AGE.
ADDRESS
CITY ZONE. ...state..........

Sawe RAD－TEL＇S QUALITY Money BRAND NEW TUBES NOT USED UP 75% ח5 1 YEAR TO 5\％U＇GUARANTEE
1 DAY SERVICE OVER 500 TYPES IN STOCK

c19．Type	Price	ary．TyPe	Prise	0t\％．19\％	Prise	Dty．Tybo	Prite
－084	． 72	－syad	48	－989	1.12	－ 12808	． 68
二俍3	${ }^{73}$	－sact	\％	－${ }^{\text {ceids }}$	1.00	二－17as	$.60$
－ 163	7	－sars	1.01	－8826	35	－ 17815	76
二105	．73	－Ancs	71	－${ }^{1827}$	1.97	－12avy	41
－143	as	$\mathrm{SAHH}^{\text {a }}$	1.10	－6CB6	\＄5	－ 3 3na	． 67
$1{ }^{19}$	＊	4ats	． 47	－ $\mathrm{Cc} \mathrm{O}_{5}$	1.31	Pax 7	8
${ }_{269}$	． 70	－tans	\％ 5	－${ }^{\text {ctc } 68}$	818	－ 12886	50
mus	58	－8405	31	${ }^{-1}$	79	－1205	17
3ycs	． 63	－6As3	0	${ }^{50} 5$		－13日L6	\％
等	\％	cau_{4}	\％	－6076	． 31	－ 128 Br	\％
3085	5	daus	37	＊＊＊	． 99	－ 12096	104
3 C	56	${ }_{64}{ }^{\text {cus }}$	17	0.6	71	－125A07	＋
30rs	． 64	savg	11	${ }_{-0168}$	1.63	$123 M 767$ $-\quad 12107$	8
$1{ }^{\text {a }}$ c	1.05	gax	\pm	－654	32	－123a7c\％	1
48	1.11	Teat	10	－${ }^{\text {en }}$－${ }^{\text {c }}$	${ }^{5}$	－ 19844	${ }^{3}$
¢ ${ }^{\text {ata }}$	${ }^{1.84}$	－${ }_{\text {\％}}$	．5s	－$\quad 671$	${ }^{55}$	$\begin{array}{r}2586 \\ \hline \quad 25006\end{array}$	1.17
${ }^{3+187}$	＊		At		S	－7564	97
${ }^{\text {ctict }}$	\％	$\begin{array}{r}8818 \\ \hline-6168\end{array}$	．${ }^{6}$	${ }_{6}^{6 W 4}$	\％	－35w4	． 48
He	71	－ 88 BF	03	sksci	53	${ }^{3585}$	． 60
\％	¢ 0	二80ct	1.67		${ }_{60} 8$	－	83

NAME

ADORESS．

Honde
STATE

> EMAD－TEL TUBE CO． DEPT．RTV． 4 S5 CHAMBERS STREET，NEWARK 5．NEW IERSEY

 to prer san wo cois mote comimal usi

A MUST TOOL FOR EVERY HOME CRAFTSMAN

SCIENCE and MECHANICS
 JOB TESTED

This specially designed S\＆M Transfer Tool is a＂must＂ for every home craftsman．Now，you can trace your full－ size Craft Prints directly onto the wood－faster，easier， and more accurately，too．

The toothed wheel perforates the Craft Print and out－ lines your cutting edge in a series of pin－point marks． The S\＆M Transfer Tool is easily guided along any line－straight or curved．

No craftsman can afford to be without a Transfer Tool．You shouldn＇t be without it another day．Order your S\＆M Transfer Tool now－use the coupon below． Only \＄2 each，postpaid．

the wallicrafters fouch makes the big difference in kit performance

Ultimate performance of the kits you build depends on the excellence of their original design. Design excellence depends on experience and creativity. In over 30 years of amateur equipment engineering, the Hallicrafters laboratories have piled up more experience and more important engineering "firsts" than any other manufacturer by a country mile. It makes sense to team up your skill with the communications know-how of the leader.

HT-40K TRANSMITTER KIT, \$89.95

- FEATURES: Excellent CW performance as well as AM. Full band switching, 80 through 6 meters. Easy tune up and crisp, professional styling. Unit is fully metered, TVI filtered.
- SPECIFICATIONS: Maximum DC power input: 75 watts, Power output in excess of 35 watts CW , 30 watts peak AM phone. (Slightly less on 6 meters.) Frequency bands: $80,40,20,15,10$ and 6 neters.
- FRONT PANEL: Function IAC off, tune, standby, AM, CW); Band Selector (80, 40, 20, 15, 10, 6); Orive Control; Plate Tuning, Plate Loading, CrystalVFO; Grid Current; Meter; AC Indicator Light; RF Oulput.
- REAR CHASSIS Microphone gain; antenna co-ax connector; remote control terminals; $A C$ power cord.

S.119K

General Coverage Receiver Kil, \$39.95

Three-Jand, superheterodyne receiver for AM plus short wave coverage from 2.0-16.5 Mc. Planetary drive tuning; transformer-operated Built-in speaker, headset provision. 3 tubes.

SX-140K RECEIVER KIT,

\$114.95

- FEATURES: Complete coverage of all amateur bands 80 through 6 meters, with extremely high sensitivity and sharp selectivity. Unit has RF stage; S-meter; antenna trimmer; and XTAL calibrator. Tuning ratio is 25 to 1.
- CONTROLS: Tuning; Antenna Trimmer; Cal. Reset; Function (AC off, standby, AM, CW-SSB); Band Selector; Cal. on/off; RF Gain; Auto. Noise Limiter on/off; Selectivity/BFO; Audio Gain; Phone Jack; S-meter Adj.

P.S.All three units are available fully wired and tested. SX-140, \$139.95, HT.40, \$109.95, S-119, \$49.95.

Send for Complete Specifications

Hallicrafters, Dept. 6-D
5th \& Kostner Aves., Chicago 24, Illinois
Gentlemen: Please send immediately latest technical information on kits indicated:

HT-40KSX-140K S-119K

Name

Address
City \qquad te

\section*{12 WATT TRANSISTOR AMPLIFIER $\$ 095$| Each |
| :---: |
| Puse | Plus Postage}

A beautifully engineered 12 watt Transistor Amplifier for music systems, public address, paging, and many other uses. Complete with husky A.C. power supply. Uses two power tra sistors with thermister bias protestion. Input impedance-16 ohms, ouput impedance- 200 ohms. Line to feed any desired number of speakers at remote points if desired. Two valts across 16 ohm input drives to full 12 watt output. Room for additional stages if desired to increase gain These amplifiers built to run continuous duty. Chassis $91 / 4^{\prime \prime} \mathrm{L} \times 234^{\prime \prime} \mathrm{W} \times 47 / \mathrm{e}^{\prime \prime}$ high. New, original manufacturer packing. Shipping weight, 12 lbs .

TRANSISTOR BROADCASTER

A unique 2 Transistor Phono Oscillator which plays thru any broadeast band. Radio will operate mike or phono pickup. Originally designed to add Stereo to regu. lar monaural system and pricd at $\$ 16.75$ each. SPECIAL CLOSE-OUT
each $\$ 2.50$
free catalog
WRITE FOR YOUR COPY OF BIG ELECTRONIC PARTS BARGAINS. MAILED ANYWHERE IN U.S.A.

CAPITOL COMMODITIES CO. INC.
4757 N. Ravenswood Ave., Chicago 40, Illinois PHONES: 10 1.3355

All Puppose SHOP TACHOMETER

Tope Recorder Speeds

Drilling Speads

Here is a real surplus scoop that we're anxious to share with you. The components of this kit if purchased individually cost over $\$ 50.00$. Yet because of a surplus windiall we're able to send it complete to you postpaid for only $\$ 16.95$. Once more this tachometer is guaranteed to outperform any $\$ 50$ tachometer available today or your money will be refunded.

MEASURES 0-15,000 RPM IN 3 RANGES

Use it to measure speeds on: - tape recorders - lathes - cutting TOOLS - KART ENGINES - MODEL PLANE ENGINES - HIGH SPEED DRILLS - APPLI. ANCE MOTORS - PULLEY BELTS - AUTO ENGINES - MANY OTHER USES

Complete kis and instructions make it easy to assemble entire kit in less than two hours using only hand taols.

SCIENCE and MECHANICS, Kit Division 505 Park Avenue, New York 22, N. Y. Add 10% for Canadian and Foreign orders.
Enclosed is $\$ 16.95$. Please send me your complete kit and nlans for assembing the S\&M all purpose tachometer. I understand that if I am not comuletely satisfled. I may | return the kit within 10 days for a complete refund.
\qquad
(PLEASE PRINT)
ADDRESS

master higher

 mathematics at home

exclusive with Britannica Schools

Abstract

BASIC MATHEMATICS • WHOLE NUMBERS AND NUMERALS • ALGEBRA I • ALGEBRA II • PLANE GEOMETRY • SOLID GEOMETRY • THE LANGUAGE OF ALGEBRA • TRIGONOMETRY • ANALYTIC TRIGONOMETRY • INTRODUCTORY CALCULUS I \& II • MANAGEMENT DECISION MAKING • VERBAL PROBLEMS • INTRODUCTION TO SETS, INEQUALITIES AND FUNCTIONS • DESCRIPTIVE STATISTICS

These 14 courses-developed by a group of skilled, carefully trained specialists in the fields of home study and mathematicsare offered by Britannica Schools in Programmed Learning format together with individualized, home-study guidance.
What is Programmed Learning? Considered by many educators as the finest way to teach mathematics that has been discovered, Programmed Learning is the technique used in teaching machines. Programmed Learning course material is presented in small, sequential segments, or "frames," each containing 1) a single piece of information closely related to the information preceding it; 2) a question to test your understanding of the information; and 3) a masked, correct answer. When you are ready to check your response to a frame,
you simply move the mask. Thus, you proceed systematically through the course, frame by frame, at the pace best suited to yourself.

What is Britannica Schools? A division of world-famous Encyclopaedia Britannica family, Britannica Schools is the first new approach to learning at home in 50 years, because it is the first, and, to date, the only home study institution that offers courses utilizing Programmed Learning techniques. As a Britannica Schools enrollee, you also have your own, individual instructor whothrough phased examinations and corre-spondence-reviews your progress, checks your grasp and retention of sections of the course material, and insures your complete mastery of the subject.

[^1]

From Scott... EREE STEREO Fhe kit catalog

Have fun . . . save money . . . build the best! Now world-famous Scott stereo components come in easy-to build kit form. You can build an FM Multiplex tuner, your choice of an 80 watt or 48 watt stereo amplifier, a preamp. power amplifier, and a speaker. Write for complete details.

TRANSISTOR IGNITION

now available as a

 2 TRANSISTOR 2 DIODE
Why pay more for less?

you can have all the FUTLRISTIC ADVANTAGES of TRAN SISTOR ELECTRONIC IGNITION NOW at LOWEST COST hy akzembling this TESTED KIT yourself, COMPLETE set of parts to build WARD circuit in February Science and Me. chanics. Includes 2 POWER TRANSISTORS, 2 1-wht ZFNER DIODES, FINNED aluminum HEAT SINK, Migh-ratio COIL. TRANSFIRE DECAL, ballast, leads, and all hardware. EVFRYTHING needed for a PROFESSIONAL JOB! Makes a $\$ 70$ Conversion at HALF the cost.

TKX- 2 with $250: 1$ coil. 30 kv output $\$ 34.95$
TSKX- 2 with $400: 11$ coil. 40 kv output $\$ 39.95$
TKX. 11 transistor with 400 :1 coll 30 k \$29.95 Above kits wired nad plastic potted-add $\$ 15$
Negative-ground only. Polnt Insulation kit for positive-round- $\$ 2.50 \mathrm{pp}$.

TX250 hervy duty Coil $250: 1$ (3 lbs.) $\$ 9.95$

Ready-to-install Conversions

You can also get TOP MILEAGE, HIGHEST PERFORMANCE, LONG POINT AND PLUG LIFE, IMPROVED STARTING with one of our wired TRANSFIRE systems. These include HERMETICALLY SEALED AMPLIFIFR, $400: 1$ COIL, and BAL LAST.

Model T 6 or 12 v . Negative.ground 30 kv . . $\$ 39.95$
Model 12 Two-transistor model T. $\$ 44.95$
Model TS Special 40ky Negative-ground. $\$ 59.95$
Model T52 Two-Transistor Model TS. $\$ 49.95$
Model TP 30 kv 6 or 12 v. Poaltive-ground $\$ 54.95$ Marine and other models Full line of parts at LOWEST PHICES. Free lists. Dealer Opmortunities.
Specify car, voltage, and grounding when orderlag. Cash orders over $\$ 30$ prepaid. $\$ 5$ deposit COD's.

PALMER ELECTRONICS LABORATORIES, INC.
CARLISLE, MASS. Dept. RT-34 AL 6-2626

TV REPAIR BOOKLET-FREE

"rofessional TV'-Redio Servleing for kiversone" liereals tricks of the trade. Shows how dnyone can gulckly diaknose any trouble -profemionalls, easily, sccuratels. No hit or miss, no guess work. Nent F'KEE of charge uith order for any service manual or any tube order totaling $\$ 5.00$ or more, of whth our suruplse pack age of Govit Surplus Electronic Purts.

SERVICE MANUAL FOR ANY SET now grallahle. Manuals contain photographs. parts lists, dismantiling and servlee procedures, schematic diagrams. and much more. A Al"w for successtal servicing.
Surprise Package of Electronic Parts guaranteed values over $\$ 5.00-$ only 51.00 ppo ANY TV SERVICE MANUAL-only $\$ 2.00$ ppd.
RADIO. HS.FI, ete. only $\$ 1.00 \mathrm{ppd}$.
TUBES-50\% to 80% oft list-send for price Hist. send now. You will recelve also bulletln deseribing fabulous buys on soy't surplus electronle merchundise. Send make set and model No. with remultance to

CENTURY ELECTRONICS, Dept. RT-2

P. O. Box 327

Hicksville, L. I. N. V.

Pick the course for your career...

Electronics Technology

A comprehensive program cover ing Automation, Communications, Computers, Industrial Controls, Television, Transistors, and preparation for a lst Class FCC License.

Electronic Communications

Mobile Radio, Microwave and 2nd Class FCC Preparation are just a few of the topics covered in this "compact" program . . . Carrier Telephony too, if you so desire.

First Class FCC License

If you want a lst Class FCC ticket quickly, this streamlined program will do the trich and enable you to maintain and service all types of transmitting equipment.

Broadcast Engineering

Here's an excellent studio engineering program which will get you a lst Class FCC License and teach you all about Program Transmission and Broadcast Transmitters.

Get A Commercial FCC License ...Or Your Money Back!

A Commercial FCC License is proof of electronics skill and knowledge. Many top jobs require it . . . every employer understands its significance. In your possession, an FCC Commercial Ticket stamps you as a man who knows and understands electronics theory ... a man who's ready for the high-paid, more challenging positions.
Cleveland Institute home study is far and away the quickest, most economical way to prepare for the FCC License examination. And that's why we can make this exclusive statement:

The training programs described above will prepare you for the FCC License specified. Should you fail to pass the FCC examination after completing the course, we will refund all tuition payments. You get an FCC License . . . or your money back!
Before you turn this page, select the program that fits your career objective. Then, mark your selection on the

Cleveland Institute of Electronics
 1776 E. 17th Street, Dept. Ex-2

 Aceredited Member

coupon below and mail it to us today. We'll send you . . . without obligation . . complete details on our effective Cleveland Institute home study. Act NOW ... and insure your future in electronics.

Mail Coupon TODAY For FREE Catalog

Cleveland Instltute of Electronics

177 E E. 17th St., Dept. EX-2

Cleveland 14, Ohio
Please send FREE Career Informatiod prepared to help mo get ahead in Electronics, without further obligation. CHECK AREA OF MOST INTEREST -

How to Succeed in Electronics

Firat Class FCC License
Electranic Communications
other
Your preeent occupation
Name \qquad
Addreas

City \qquad Zone. State EX-2

56.44 ANHOUR सtynivi

STEP INTO THIS BOOMING

 \$19 8ILLION A YEAR INDUSTRY ands of accidents and losses will happen this year in your community. We'll show you how 10 investigate and adjust these losses for insurance companies, railoads, government offices. You buy NO tools or equipment. You do NO selling. You need NO prior experience or higher education. And you can operate out of your own home. Right now independent Accident investigators average $\$ 6.44$ att howr. We'll train you quickly to do the same. Start parttime if now employed. Fill the need for an Accident Investigation specialist in your area. Colorful booklet explains everything. Absolutely no obligation on your part. No salesman will call. Write TODAY for FREE Booklet. UNIVERSAL SCHOOLS, SMH-3 6801 Hillerest, Dallas 5, Texas```
FANTASTIC SALE
New, tested and guaranteed chassls complete wlth tubes, transigrors
```



``` ransmitter, \#2-5W 50me "ham" 1 ransmitter. \# \(3-100 \mathrm{mw} 27 \mathrm{me}\) transistorized ClB transmltter. \#4-27me crystal controlled converter for broadcast band radlos. \(\quad 5-50 \mathrm{me}\) crysial cuntrolled converter for broadcast band radion. \#6-TNA type nolse limiter and squelch. \# \(7-27 \mathrm{me}\) signal hooster atnplifter
Quantity is very limited-order today.
190-48 VAN

\section*{AGE DOES NOT DIM THE QUALITY OF}

\section*{ELLERY QUEEN'S \\ Mystery Madazine}

THE WORLD'S LEADING MYSTERY MAGAZINE

\section*{BUT ISSUES NO LONGER}

\section*{CURRENT CAN BE DELIVERED TO YOU}

\section*{AT A DISCOUNT.}

And not so very old, either. 1958 to 1962. At ten for a dollar they become an exciting mystery and suspense grab bag at grab bag prices. That divides down into 132 pages of the best writers in the field for a dime. So whoever said, caveat emptor certainly wasn't referring to this offer.

May we hear from you? A dollar along with the coupon below and we'll reply with ten (10) assorted back issues of ELLERY QUEEN'S MYSTERY MAGAZINE in newsstand condition.

Until the supply is exhausted, of course. And that might happen any day,

So hurry-

\section*{ELLERY QUEEN'S HOUSEKEEPER \\ 505 PARK AVENUE, NEW YORK 22, N. Y.}

Yes... here's my \(\$ 1.00\). Send me the ten assorted back copies of ELLERY QUEEN'S MYSTERY magazine.

Name \(\qquad\)
(Please Print)
Address \(\qquad\)
City \(\qquad\) Zone \(\qquad\) State \(\qquad\)

\section*{The move into electronics is your decision. GRANTHAM SCHOOL OF ELECTRONICS makes your move easier....}
...easier by teaching you electronics in a logical, step-by-step manner, while preparing you to qualify for your First Class Commercial FCC License. This license is a "diploma" issued by the U. S. Government to certify qualified electronics technicians, and is awarded only to those who pass certain technical FCC examinations. We teach you electronics and prepare you to pass these FCC examinations.

Grantham training is Specialized Training, endorsed and recommended by many electronics firms throughout the nation, and accredited by the National Home Study Council. We teach you the how and why of basic electronics, with the necessary math taught as an integral part of the lessons. The
course is thorough, easy to understand, and lays a solid foundation for all types of electronics work communications electronics, military electronics, computer electronics, automation electronics, broadcasting electronics, and many more.

The time required to prepare for your first class FCC license, an imporiant slep foward your goal, is cut to a minimum through quality instruction either by home study or in resident classes. You learn more electronics in less time because the Grantham Method is engineered with the student in mind. Complete details concerning Grantham training are available free for the asking. Now, it's up to you-it's your movel

\section*{GRANTHAM}

\section*{SCHOOL OF ELECTRONICS}

\author{
Accredited Member of the National Home Study Council
}
(Phone: MA 2.7227)

3123 Giliham hoad Kansas City 9, Mo.
(Phone: JE 1.6320)

32f-19th Strest, N.W. washington 6, D.C. (Phone: ST 3-3614)
(Moil in anvelope or palle on postol cord)
E-3D
TO: GRANTHAM SCHOOL OF ELECTRONICS NATIONAL HEADQUARTERS OFFICE 1505 N. Wetern Ave., Hollywood 27, Calif.

\section*{Gentlemen:}

Please send me your free booklet lelling how I can get my cammercial F.C.C. license quickly. I understond there is no abligation ond no solesman will call.
Name \(\qquad\)
Address
ciry Stole
I om interested in: \(\square\) Home Study, \(\square\) Resident Classes

\section*{ELECTRONIC KITS}

\section*{\(\square\) STEREO \＆MONO HIFI \(\square\) TEST INSTRUMENTS \\ \(\square\) HAM GEAR CITIZENS TRANSCEIVERS \\ WALKIE－TALKIES TRANSISTOR RADIO}
－All easy－to－build－with complete， step－by－step，beginner－tested pictorial instructions
－All tremendously economical－ cost \(50 \%\) less than comparable wired units
－All professlonal quality－ uncompromisingly engineered

ーーー Mail coupon todayーー－ EICO Electronic Instrument Co．，Inc． 3300 Northern Blvd．，L．I．C．1，N．Y．

Please send FREE catalog and name of neighborhood dealer．

Name \(\qquad\)
Address \(\qquad\)

Hunting
for
you＇ll find you are in for tempting big re－ ideas？ ports on all the worthwhile new mobile homes and travel trailers－colorful＂camera tours＂ through America＇s most exciting parks－ex－ pert articles for your more enjoyable and profitable mobile home living．For new sub－ scribers，mail the coupon below．

\section*{NEW GATAOC FEATURES：} are sure to appeal to every interest．It gives a full description of plans for bullding a wide variety of boats，electronic and electrical equipment，powered vehicles such as go－karts，model making，trallers，toys and games，and home furnishings．There is even a special section for Science Falr projects．Boat builders will be interested In what full－slze patterns are now avallable on certain very popular boats．Send now for this new comprehensive catalog．

\section*{SCIENCE AND MECHANICS，CRAFT PRINT DIVISION}

505 Park Avenue．New York 22，New York
Enclosed is 254 which I understand will be refunded with my first order．Please send me CaLalog \＃3 which now contajns 238 money－saving projects
NAME
（PLEASE PRINT
ADDRESS
CITT．
ZONE．．．．．．STATE

\section*{EXPERIMENTERS • AMATEURS • HOBBYISTS}

Save real money on radio parts．Write today for big free catalog of government surplus electronic materials，many items priced at \(90 \%\) below list．All are new unless otherwise indicated．Here＇s a sample：

SDUND SYSTEM BASIC COMPONENTS KIT
Plonning to put in o music systam for wide coveroge？Hers ore the major components needed to spreod oround on honast 35 wotrs； push it o little and you＇ll ge！sisty．Pawer amplifien is a 60 cysle drive unit made for the Air Forse by Tracerlab；It is a component of Radiae Wrap Alound Counter Type A．1．Ramove the bequency determining capacisor from the grid eiccult of the 807 s and you have on FB omplifier with very nice response chorocteristles． Schamatic is furalshed ond omplifier is constructed of the finest Quality components thesughout．Power transformer，choke，iners tage ond outpur transformer ore Grode I．Class A hermeticolly seoled
units mode by UTC．A65N7 dives the push－pull 807s．Rectitiers ore SRaWCYs ond seceen voltoge is cequlared by o pair of OD3s． Remove the series resistat in the inpur und morch 3 voles re deive this eqvipment to rated output．Perthaps you＇ll mont to add a stage of omplificotion oheod of the 6SN7 with sontrels on the power om． olifier；there＇s pleaty of roam ovailoble on the chassis．Output motches srondord 500 ahm Inse．Also furnished are slax morching ronsiormers suitable for matthing line to volice coils ronging from 2 to 16 ohms：complere instiuctions furnizhed with each 10 wolt plus trensformer．Sia 500 ohm \(T\)－pod ertenuotars ore olso furnished or the pockoge pise．You supply the elie，apesakers and preomp and yovire in business．The se are new；somes shom ofer external abrasions hiom long storage．Complete with all tubes in neot shock mounted cose maasurfing \(12^{\circ "}\) by \(16^{\circ 6}\) by \(10^{08}\) high ensluative of nounting．＂Chimney＂rype convection cooling is incorporated in this equipment，Shipping weight 100 pounds．（L．26）

\author{
\(\$ 49.50\)
}

FOB SACRAMENTO

\section*{BUILD 10－20 RADIO CIRCUITS AT HOME \\ with the Deluxe PROGRESSIVE RADIO＂EDU－KIT＂® \(\$\)＂ A Practical．Home Radio Course \\ Now Includes \\ ＊RECEIVERS \\ ＋TRANSMITTERS \\ ，SQ．WAVE GENERATOR ＊SIGNal tracer －AMPLIFIER ＊SIGNAL INJECTOR ＊CODE OSCILLATOR \\ ＊No Knowlodge of Radio Necessary ＊No Additional Parts or Tools Needed ＊EXCELLENT BACKGROUND FORTV \\ SCHOOL INQUIRIES INVITED \\ \(\star\) Sold In 79 Countries \\ YOU DON＇T HAVE TO SPEND hundreds of dollars for a radio course \\ The＂Edu．Kit＂offers you an outstanding PRACTICAL HOME RADIO COURSE at a
rock－bottom price．Our Kit is destined to train Radlo 8 Electronics Technicians，makink use of the most modern methods of home trainink．You wili dearn radio theory．construc． You will learn how to build radios，usiny resular schematics；how to wire and soiden in a protesslonal manner；how to service radios．You whil work with the standard type of
punched metal chassis as well as the latest development of printed clicult chassis． Hou will learn the basic princlples of radio．You with construct，study and work with and pracilce code，using the progressive code oscillator，you win signal inflecter pro troubleoshooting；using the Prozressive Siznal Tracer．Progressive Signal Injecior，Pro－
gressive Dynamic Radio \＆Electronics Tester．Square wave Generator and ine accompany－ gressive Dynamic Radio \＆Electronics Tester．Square wave Generator and ine accomational material．for the Novice．Technician and General Classes of F．C．C．Radio You whll receive training for the Novice．Technician and General Classes of F，C．C．Radio
Amateur Licenses．Vou will build Receiver，Transmliter，Square Wave Generator，Code \\ Troining Electronics Technicions Since 1946 \\ FREE EXTRAS \\ －SET OF TOOLS \\ －soldering iron －ELECTRONICS TESTER ：PLIERS．CUTTERS \\ ：WRENCM SET ISCOUNT CARD ：CEERIFICATE INOFTMERN MANU －MEGEVIDELTY CUIOE MANUALES －TELEVISION BOOK K RADIO \\ －M M M AMATEUR LICENSETRAINING \\ －pRINTED CTRCUITR} Osclletor，Signal Tracer and Signal injector circuits，and learn how to operate them．You will receive an excellent background or radio or science fs requlred．The＂Edu－kit＂is prowide you with a basic edueation in Electronics and Radio，worth many times the low

\section*{PROGRESSIVE TEACHING METHOD}

The Progressive Radio．＂Edu．Kit＂lt the foremost educatlonal radiokif In the world． and is universaliy accepted as the stancird on the field by olectronics therefore you conttruct． tearn schematics．study theory，practice trouble shooting，all in an ciosely intexpated pro－ gram designed to orovide an easily learnedilo parts of the＇Edu－kit．＂You then tearn the lunction．theory and whing of these parts．Then you bulld a slmple radio．With this first set you will enjoy fistening to regular broadcast stations，learn theory，practice testink and trouble－shooting．Then you bulld a more advanced radio，learn more advanced theory
 professlonal Radio Technician．
inciuded in the＂Edu－Klt＂，course are Recelver．Transmitter，Code Osclitator，Signal Tracer．Square wave Generator and sugnal Injector，circuits．These are not unprotessional wlring and soldering on metal chas＊is，plus the new method of radio construction known
as＂printed circultry．＂These clrcuit申 operate on rour regulat ac or DC house current

\section*{THE＂EDU－KIT＂IS COMPLETE} You will receive all parte and Instrwctions necescary to build several ditferent radio vand able，electrolyelc，mica，opramic，and paper delectric condensers，reststors，tie strips， hariware，fubing，punched metal chassis，intituction man
elenium rectifier，cons， In additlon．you recelve Printed inscutt materyou also receive a useful set of tools，a protessional electic soldering Iron．and a selt－powered oynamic padio and Electionics protessiona ．ectikit＂，aisu includes Code Instructions and the Prokressive code osciliator， in addition 10 F．C．C．－type Questions and Answers fop Radio Annateur Tracer and the Propres－ wil alsorecelinectors．Hich Fidelity Guide and a Quiz Booh．You recelve Membership in sive slenal iniector，AHith Consultation Service，certificnte of Merit and Discount Privileges．

\section*{SERVICING LESSONS} You will learn trouble shooting and
servicing in a progressive manner．You will practice repairs on the sets that you construct．You will learn symptoms
and causes of trouble In nome，portable and car radios．You wlit lewern how to une the protessional stiknal Tracer，the unique siknal injector and the dynamic radio a Electronics pester．Whine you wlit be able to do many a repair lob for your frlends and nebikhors，and charke tees．Which will far exceed the price of will heid you witif any technieal prob－

> FROM OUR MAIL BAG J．Stataltis．ol 25 Poplar Pi．．Water． several sets tor my Priends．and made money．The＂＇Edu－kit＇\(\$ 2 f_{0}\) ior ior course． but if lownd your ad and sent for your Ben Valerio，P，Oon 21 ，Magna． am sendink fou the questions and also padio for the last seven years，but like o work with Radio Kits，and like to ould Radio Testink Equipment．I en－ diferent kits：the sianal Tracer works teei proud of becomins a member of your Radio－Tert L ．Shuff． 1534 monroe Aveit drop you a few limes to say that ife ched my Edu－kit，and was really at such that such a bargain can ore have already started te－ palrind riditos and phonozraons．My get linto the swing of it so quickily．The roubleshooting Tester that comes with隹作，is thealy swell．and finds the

Choose From These Popular
＂Edu－Kit＂Models
\＃10A： 10 Circuits \(\$ 14.95\)
\＃15A： 15 Circuits \(\$ 19.95\)
\＃16A． 16 Circuits
（includes Printed Circuirry）\(\$ 22.95\)
\＃20A： 20 Circuits（includes Printed Cir－
cuitry and 4 Advanced Circuits）\(\$ 26.95\)

\section*{ARE YOU INTERESTED IN AUTOMOBILES • BOATING • ELECTRONICS•DO-IT-YOURSELF}

Of course you are! And now you can be sure you get all the special S\&M Handbooks specially dedicated to your interest-and you'll get them automatically! Here's your opportunity to build or add to your own special interest library-and save money, too.
Here's what you'll get in each of the new S\&M Handbook Group subscriptions during the course of the year:

S\&M BOATING GROUP
Boat Builder's Handbook Engine Handbook (4 issues) Fisherman's Manual
Camping Handbook

\section*{S\&M BUSINESS OPPORTUNITIES GROUP}
\begin{tabular}{lc}
Careers and Jobs & How to Buy or Sell \\
Crafts \& Hobbies & Your Hoose \\
Electrical Handbook & Income Opportunities \\
(2 issues) & Inventor's Handbook \\
Home Appliance Repairs & Radio'TV Repairs \\
\multicolumn{2}{c}{ Small Investor's Guide }
\end{tabular}

\author{
S\&M ELECTRONICS GROUP \\ Electrical Handbook Radio-TV Experimenter (2 issues) \\ Elementary Electronics \\ Home Appliance Repairs Science Experimenter Junior Mechanics Handbook \\ \section*{Surplus \& Salvage Projects}
}
\begin{tabular}{cc}
S\&M HOME CRAFTSMAN GROUP \\
Boat. Builder's Handbook & Home Repair Handbook \\
(4 issues) & Home Workshon \\
Christmas Suggestions & Handbook (4 issues) \\
Doitt-Yourself Plumbing & Kitchen \& Bath \\
Electrical Handbook & Improvements \\
(2 issues) & 1001 How-To Ideas \\
Furniture Handbook & (4 issues) \\
Home Appliance Repairs & Small Home Plans \\
Home-Buil Power Tools & Woodworker's \\
Home Modernization & Encyliopedia \\
Handbook & (4 issues)
\end{tabular}

\section*{S\&M OUTDOORS GROUP}

Auto Racing Handbook Fisherman's Manual Boat Builder's Handbook Garden Handbook (4 issues) Gun Handhook Camping Handbook Photography Guide Water Sports Handbook

\section*{S\&M YOUTH GROUP}

Auto Racing Handbook Junior Mechanics

Camping Handhook
Careers and Jobs Cratts \& Hobbies Elementary Electronics Fisherman's Manual Gun Handbook Income Opportunities

Handbook
Photography Guide Science Experimenter (2 issues)
Surplus \& Salvage
Projects

Think of it! These big S\&M Handbooks. They sell by mail for \$1 each, but you save up to more than \(33 \%\) when you order the special S\&M Group subscription of your choice. Do it now-use the coupon below.

START NOW! Break through the Earning Barrier that stops half-trained men. N.T.S. "All-Phase" training prepares you at home in spare time - for a high-paying CAREER in Electronics - TV - Radio as a MASTER TECHNICIAN. One Master Course at One Low Tuition trains you for unlimited opportunities in All Phases: Servicing, Communications, Preparation F.C.C. License, Broadcasting, Manufacturing, Automation, Radar and Micro-Waves, Missile and Rockef Projects.
A more rewarding job . . . a secure fufure... a richer, fuller life can be yours! As on N.T.S. MASTER TECHMICIAN you can go stroight to the top in industry... or in your own profitable business.

\section*{SUCCEED IN MANY HICH-PAYING JOBS LIKE THESE..}
- IV-Radio Sales, Service and Repair
- Profitable susiness of Your Own
- Communications Iechnician - f.C.C. License
- Mi-\$i, Stereo \& Sound Recording Specialist
- IV-Radio B oadcasting Operator
- Technician in Computers \& Missiles
- tiectronics Field Engineer
- Specialist in Wicrowaves \& Servomechanisms
- Expert Iroable Shooter
- All.Phase Master Technician

\section*{}

Write Deat. RKK-43

19 BIG KITS
YOURS TO KEEP

\section*{Free book gives you all the facts}

acentoitio mamite ... the anly nationolly -acognized arcrodiking agency lor private
home shydy whools.
N.T.S. Shop-Tested HOME TRAINING is Belfer, More Complete, Lower Cost . . . and it is your key to the most fascinoting, opportu-nity-filled industry todoy!
YOU LEARN QUICXLY AND EASILY THE N.T.S. SHOP-TESTED WAY
You get lessons, manuals, job projects, unlimited consultation, graduate advisory service.
You build a Short Wave-Lang Wave Superhet Receiver, plus o largescreen TV set from the ground up, with parts we send you of no oddi-
tional cost. You also get a Professional Multitester for your practical job projects.

\section*{EARN AS YOU LEARN... WE SHOW YOU HOWI}

Mony students pay for entire tuition - and earn much more - with spore time work they perform while training, Yau can do the same... we show you how.
SEND FOR INFORMATION NOW... TODAYIIT COSTS YOU NOTNING TO INVESTIGATE.

\title{
ON SAIE NOWI ismeme
}

\section*{LATEST EDITIONS OF S\&M HANDBOOKS}

Pick up your copies of these informative guides that are loaded with money-saving ideas and highly illustrated projects. Or use the coupon below and have them delivered.

Step-by-step gervicing and maintenance srilicles for the mechanically-inclined budget conscious car owner. A must guide for every driver.

How to shape wood like a pro using the right tool for every job, Heavlly illustrated and detulled for scores of practical projects.

Updated quide on where and how to go, and what to do on ar rival. Special camping sections on evers state and Canada.

Complete, easy-to-follow plans show how to build tested bouts at big savings. Contalns more thun a dozen plans that can be used at once.

An indispengable guide for the home owner or apartment dweller who wants to know how to nake. install or repair electrical equip. ment-safely.

A how-to primer for rod and A how-to primer for rod and reel lorers, ranging from selectested tricks used by the pros to land "blg ones."

Fact-flled rolume for householders on the move. What to look for when buying a new or old hotne, Tips on locatlons, taxes, mortgage plans, etc.

Rewarding projects for tho craftsman with full-detalled text and profuse illystratlons. workflelds.

Loaded with practical. moneysaving tips for do-it-sour-relfers. KInks cover home maintenance. car servicing. boating. electron-

A 'must' Handbook for high school science students spelltug out the kind of projects they can develop into projects they winners. into sclence Fai

Inraluable guide to better flower and vegetable gardens, solution and regetable gardens. solution make practical problems. how to make practical and low-cost

\section*{S\&M HANDBOOKS - 505 PARK AVENUE - NEW YORK 22, NEW YORK}

Enclosed is \(\$ \ldots . .\). include postage and handling for the do-it-yourself volumes checked below. Each volume is \(\$ 1\) each for delivery. Please allow four weeks for delivery.
\(633 \quad \square 634 \quad \square 635\)
\begin{tabular}{llll}
\(\square 628\) & \(\square 629\) & \(\square 630\) & \(\square .631\) \\
\(\square 624\) & \(\square 625\) & \(\square 626\) & \(\square 627\)
\end{tabular}
\(\qquad\)
ADDRESS
CITY................. ZONE.... STATE.........

VACUUMTUBE VOLT METER KIT (6. INCH METER)6. iNCH p. to p. scale. RMS and p. top. 12.2 Input imped. 12.2 mege. Professional performance and appearance. Kit: \(\$ 31.95\) Acoembled: \(\$ 44.95\)

"CUSTOM 70" TV SET KIT-Excellent sensitivity. Transformer power supply; 3 stages of IF. Includes glimline cabicludes glimme picture tube-every thing. NOT a portable. Kit Price: \(\$ 135.00\)

TRANSISTOR RADIOKIT Superb tone and sensitivity. No delicate printed circuits. Attractive, durable caee. All U.S. made parte Kit: \(\$ 25.50\)

S-INCH WIDE BAND OSCILLOSCOPE KIT-For black-white, Kior, AM-FM and colectronic applications. electronic apply trace. Extremely stable sync. Advanced design.

Kit: \(\$ 89.50\)
Assembled: \(\$ 139.50\)

\section*{Get your FREE 1963 CATALOG from \(\mathbb{C O N A}\) \\ It's full of exciting new electronic kits of highest quality. Many items available in both kit or assembled form. Home entertainment items that make perfect family gifts or test instruments for the technician who appreciates quality and high performance. Tools, too, to make your work easier, faster. And you'll like the reasonable prices and convenient payment plans which make CONAR Kits easy to own. Mail coupon for new 1963 Catalog now. \\ }

division of
NATIONAL:RADIO
guarantee
Parts and performance guaranteed by \(\mathrm{NRI}-\) nearty 50 years of pioneering in Electronics.

INSTITUTE

\section*{Mail this Coupon}

CONAR
3939 Wisconsin Ave., N.W.
1) P 3 C

Washington 16, D.C.
Send me your new 1963 CONAR KIT CATALOG
Name
Address
City \(\qquad\) Zone \(\qquad\) State \(\because\)

ELECTRONIC SURPLUS BARGAINS

Snooperscope tube

NICKEL CAD. BTRY min. size exa/tx x 1 nt STEP SWITCH 10 pos. stell \& reset 2 hank SNOOPERSCOPE tube. see in dark \#i03:
SOLAR BANK KIT if cells w/instructions
BC. 733 Mitry Herr conlerts ㄹ. \& mir revr with complete conv. sherts
\(\$ 1.50\) 5.00
6.50
1.50

TRANSISTORS 15 Rell. purpose lo-voltange
PTO CIRCUIT BOARDS COPPER LAMINATE \(3 \times 10\)
PHILCO SB-100 Ili-ireq transistors w/com sheet for pulice \& fire conterter \(30-50\) me
SOUND POWER PHONES w/100 ft wIre
2.00

IBM MEMORY PLANE 4,094 bit (cost \(\$ 4,000\)) GIANT 17 FT BALLOON (wgt \(2 \bar{\circ}\) liss)
GEIGER KIT w/900 wolt supply (easy to make)
ALNICO HI-POWER MAGNETS--unbelievahle power
4/1.00
IBM COMPUTOR BOARDS oner li:0 parts remortable and useable. Hesistors, cap. torolds, etc.
1.00

PERISCOPE PRIMS, large optical prism \(\mathbf{5}^{\prime \prime}\) long
1.00

POWER SPLY :4V \& Amp uut, 115 j 60 Cy in
All material FOB Lynn, Mass. (you pay shipping). Minimum order \(\$ 5.00\). These are a few selected bargains from our giant 60 page catalog of Government Surplus Material. Send loc coin or stamps for your Illustrated catalog.

\section*{JOHN MESHNA, JR.}

21 Allerton St.
Lynn, Mass.

\section*{HAS HAM RADIO THEORY GOT YOU ALL \\ \\ UNDERSTANDINE AMATEUR RADIO.}

Step by step, in 16 chapters, easy to read with hundreds of photos, charts, tables and diagrams, the book covers all the radio theory you need to pass the amateur exams, and tells how to build, set up, trouble-shoot and test low- and medium-power amateur stations from crystal to antenna. Pick up a copy for \(\$ 2.00\) at your favorite radio store, or order directly from: The American Radio Retay League, West Hartiord 7, Conn.

\section*{To: AMERICAN RADIO RELAY LEAGUE \\ RTE-63} WEST HARTFORD 7, CONNECTICUT

You bet I want UNDERSTANDING AMATEUR RADIO. Here is my check or money order...... for \(\$ 2.00\). (Sorry, no C.O.D.'s please.)

NAME.
STREET or BOX
CITY and STATE

\title{
Anyone Can Build These High Quality Precision S\&M Kits At a Substantial Savings
}

A

\section*{Precision Decade Resistance Box}

Designed so the electronic experimenter can get any value of resistance at \(1 \%\) accuracy. Made of precision components, this decade box offers such advantages as fast fingertip switching from any resistance value from 1 ohm to \(1,111,110\) ohms within seconds. Add or subtract as little as 1 ohm with \(1 \%\) accuracy. And ordinary hand tools are all that's needed to assemble it in less than 2 hours.

\section*{Pocket-Size Hearing Aid}

New hearing aid design provides a minimum of 42 decibels of gain and is adequate for \(75 \%\) of all cases of partial deafness. The aid weighs only three ounces and is smaller than a kingsize cigarette pack. Uses latest electromagnetic earphone and miniature crystal microphone, Powered by a \(10 ¢\) pen light flashlight battery and has a switch for turning power off when not in use and a control that lets you adjust the volume to a comfortable sound level.

\section*{All Purpose Shop Tachometer}

This tachometer is guaranteed to out-perform any \(\$ 50\) tach available today or your money will be refunded. This tach belongs in the tool chest of every machinist, electrician, model maker, motor serviceman and inventor. A six position rotary switch enables you to select three speed ranges in elther forward or reverse rotation. Three ranges- \(0-500,5000\) and 15,000 - cover the gamut of rpms in the home workshop or laboratory on machine tools, such as lathe cutting speeds, motor rpm, drilling speeds and other motor driven tools where rpm is an important factor.

\section*{Radiation Meter}

Press the button and this sensitive Geiger counter instantly reads the level of beta and gamma radiation. It can be used for safety monitoring, prospecting and experiments in nuclear science. Water, food, clothing and general supplies, as well as radiation level in the immediate area can be tested with the lower scale (\(0-25\) milliroentgens). Higher range (\(0-250\) milliroentgens) can be used to read dangerously high levels of radiation. Completely portable.

> All S\&M kits carry an unconditional guarantee of performance and accuracy. If for any reason you are not satisfied with the performance, it may be returned within 10 days and your money will be refunded.
SCIENCE AND MECHANICS, KIT DIVISION

\section*{505 Park Avenue, New York 22, N. Y.}
Please send the S\&M kits that have complete assembly plans, or the assembled and fully tested electronic alds checked below. I understand that if I am not completely satisfied I may return \(\mid\) the kits within 10 days for a complete refund of the purchase price.

name
(PLEASE PRINT)
ADDRESS
CITY ZONE STATE
Check or money order en- Enclosed \(\$ 3.00\) deposit. shjp balance closed, ship post paid. \(\square\) C.O.D. plus postage and C.OD. charges.

\section*{INTERESTED IN DO-IT-YOURSELF? \(\otimes\)}

Of course you are! And now you can be sure you get all the special S\&M Handbooks specially dedicated to your interest-and you'll get them automatically! No chance of missing a single issue. Here's your opportunity to build or add to your own special interest library-and save money, too.
Here's what you'll get during the course of a year:

\section*{S\&M HOME CRAFTSMAN GROUP}
\(\begin{array}{cl}\text { Boat Builder's Handbook Home Repair Handbook } \\ \text { (4 issues) } & \text { Home Workshop }\end{array}\)
Christmas Suggestions Do-It-Yourself Plumbing Electrical Handbook (2 issues)
Furniture Handbook Home Appliance Repairs Home-Built Power Tools Home Modernization Handbook Handbook (4 issues) Kitchen \& Bath Improvements 1001 How-To Ideas (4 issues)
Small Home Plans
Woodworker's
Encyclopedia (4 issues)

Think of it! 27 big S\&M Handbooks. They sell by mail for \(\$ 1\) each, but you save more than \(33 \%\) when you order your special S\&M Home Craftsman Group subscription. Do it now-use the coupon below.

\section*{27 Big S\&M Handbooks only \(\$ 18.00\)}

\section*{Coming in the May Issue}

Build an Air Compressor for \(\$ 50\)

\section*{SCIENCE and MECHANICS}

Our Bulletproof Soldiers
A Pickup as Your Second Car

\section*{Tipsy Tall Ones}

Building doctors use a variety of methods to keep giant skyscrapers from leaning.

\section*{Armored Soldiers}

King Arthur's knights found armor a great aid in batthe. Now our fighting men are equipped with life saveing armor that keeps them safe and highly mobile.

\section*{Trip to the Moon}

This country is committed to Yon Braun, the leading rocketeer in the world and his method of getting to the moon in short hops with rests between.

\section*{ON SALE March 28th}

\section*{AT ALL NEWSSTANDS}

\section*{Youill also be interested in:}

How to build a beautiful combination lamp and table with simple tools.

Building a portable air compressor that is sure to have o hundred uses around your home.

An outdoor picnic table that is both attractive and functional. Spring isn't too far away!

For Information on Classified ads-to be ineluded in cur nex: RADIO-TV EXPERIMENTER and other Handbooks-write C. D. Wilson, Mgr., Classified Advertising, SCIENCE and MECHANICS HANDBOOKS, 505 Pork Ave., New York 22, N. Y.

\section*{ADDITIONAL INCOME}
\$100 WEEKLY possible. Complle mallIng lists and address envelopes for advertisers. Home-spare time. Particulars free. National Service 81. Knickerbocker Sta., New York Clty 2.

MAKE Money At Home selling cartoons and drawings to Advertising Agencles, Studios, Publishers, Syndicates. Prontable sideline or full-time profession of unllmited Opportunities. Free Book. Continental Schools, Dept. E-85. \({ }^{4201}\) So.
Broadway, Los Angeles 37. Calif.

MAKE \$25-50 week, cllpping newspaper Items for publishers. Some clipplngs worth \(\$ 5.00\) each. Particulars free. National 81, Knickerbocker Station. New York 2 .

\section*{ATHLETIC EQUIPMENT \& BODY \\ BUILDING EQUIPMENT}

WEIGHT Exercising Equipment. Free literature. Ed Jublnville, Holyoke, Mass.

\section*{AUTHOR'S SERVICE}

LOOKING For A Publisher? Learn how we publish, promote, distribute your book. Free Booklet \(\mathrm{H}-1\). Vantage Press, 120 West 31st. New York 1.

PUBLISH your book! JoIn our successful authors; publicity advertising promotion, beautiful books. All subjects invited. Send for free appralsal and detailed booklet. Carlion Press. Depl. SMD, 84 Fifth Avenue, New York City 11.

\section*{AUTO PARTS \& ACCESSORIES}

TRANSISTOR Ignition Coll-Instructlons. Spectal \(\$ 8.50\). Anderson EnglneerIng. Wrentham, Mass.

\section*{AUTO TRAILERS \& SUPPLIES}

BUILD Expanding elght foot traifer. Accommodates five. Literature \(10 c\). FiaAccommodates, five. Literature \(10 c\)
Mar Company, Wilmington, Mass.

\section*{BATTERIES, GENERATORS}

REBUILD Batteries! Complete Manual \(\$ 3.00\). C.O.D. Accepted. Bayer Publicatons, 938 AK , Betty Avenue, Neenah. Wis.

\section*{BOATS, MOTORS \& MARINE SUPPLIES}

BOAT Plans, Frame Kits. Full-Size Patterns! 80 -page catalog illustrating over 40 Bulld-it-Yourself Boats 50 C . Glen. Dept. 11, 9152 Rosecrans, Bellfower, California
BOAT Trailers. 6 Different Plans. Manual \$2.50. Wholesale prices, circulars 306. Kamcraft, Box 1153, Milwaukee 1. Wisconsin.

\section*{BUSINESS OPPORTUNITIES}

ASSEMBLE Artifical Lures at home for stores. Materlals supplled Free. Profitable! Write: Lures, Ft. Walton Beach. Fla.
INVESTIGATE Accidents. Earn \(\$ 750.00\) to \(\$ 1,000\) monthly, Men urgently needed. Car furnished. Business expenses pald. No selling. No college education necessary Pick own job location. Investigate full time. Or earn \(\$ 6.44\) hour spare time. Write for Free Literature, No obligation. Universal, CMH-3. 6801 Hillcrest. Dallas 5, Texas.
I Made \(\$ 40,000.00\) Year by Mallorder! Helped others make money! Start wilh \$10.00-Free Proof. Torrey. Box 3566-T, Oklahoma City 6. Okla

COMMERCIAL Art Is Profitable. Free detalls on home instruction method Continental Schools, Dept. E-86, 4201 So Broadway. Los Angeles 37, Calf.

\section*{BUY IT WHOLESALE}

DEALERS Cost-all 1963 Cars- \(\$ 1.00\). Petros \(5404-\mathrm{S}\) South Mozart. Chicago 22.

\section*{CAMPING EQUIPMENT \& TENTS}

THE World's Largest Selection of Camping Equipment. See it all on display. Camper's Shop, 4825 N .2 2nd Street. Rockford. III

\section*{DEALERSHIPS Avallable to Sell and Rent. The E. Z. Kamper, in New York State. Write to R. J. Sches, Factory Rep. State. Write to R. . Scheg, Factory Rep.
\(\%\) Ablo Campln \% Ablo Campin Trallers, Inc., York. \\ CHEMICALS \& APPARATUS \\ PYROTECHNICS Manual contains formulas for flares, explosives and "Stars." \(\$ 1.00\). Kel-Tec Laboratory, Box} 804, Burlington, Vermont.

\section*{COINS, CURRENCY \& TOKENS}

UNCIRCULATED 1935 Silver Pony Express Commemorative Medal \(\$ 1,00\). Coln press Commemorative Medal Lists . Sayers, 1000 Unaka, Johnson Lists Free.

\section*{EARTHWORMS}

BIG Money Ralsing Fishworms and Crickets. Free Llterature. Carter Farm-O. Plains, Georgia.

\section*{FOR INVENTORS}

PATENT Searches-48 hour alrmall service, \(\$ 6.00\), including nearest patent coples. More than 200 registered patent attorneys have used my service. Free Invention Protection Forms. Write Miss Ann Hastings, P.O. Box

PATENT Searches, including coples of related U. S. patents, \(\$ 6.00\). Inventors, attorneys, manufacturers use my "Worldwide" airmall service. "Invention Record" form and Information Every Inventor Needs, sent ree Miss Hayward, 1029 Vermont Ave., N. W., Washington 5, D. C.

\section*{HOME WORKSHOP SUPPLIES}

FREE. New Catalog. 2447 Plans, Patterns. World's greatest selection things to do make. Fun. Proft. Craftplans. \(18250-\mathrm{H}\), Harwood, Homewood, 111 .

VENEERS, \(1 / 28^{\prime \prime \prime}\) Thick. Send \(\$ 1.75\) for Two Square Feet each of Mahogany, Maple. Oak, Cherry and Walnut. Catalog of Woodworking Supplles \(10 ¢\). Barap Specialtes, P.O. Box 2044, Dept. WE-4, Chicago 9.

Catalog of all Science and Mechanics Craftprints. Send \(25 c\) to cover postage and Handiling to Craftprint Div. Science and Mechanics, 505 Park Ave., New York 22.

\section*{HYPNOTISM}

NEW concept teaches you self-hypnosis quickly! Free literature. Smith-Mckinley, Box 3038. San Bernardino, Calif.

HYPNOTISM: Little Known Method. Free Information. Dr. Azadiane, Fowler, Calliornia.

\section*{MONEYMAKING OPPORTUNITIES}

INCOME From Onl Can End Your Tolll Free Book. Maps! National Petroleum. Pan-American Building-SM, Miami 32, Florlds.

DRAW For Profit. Practical training at home can qualliy you to earn additional income. Send your drawings to local publicatlons, advertising agencies or Internatlonal Syndicates. Huge profts involved. Free Book tells you how. Continental Schools, Dept. E-89, 4201 So. Brondway. Los Angeles 37. Callf.

MAKE Mall Order pay, Get "How To Write a Classified Ad That Pulls." This handbook tells how, with examples: Includes certificate worth \(\$ 2.00\) toward classifled ad in \(S\) \& M . Send \(\$ 1.00\) to \(\mathrm{C}, \mathrm{D}\). Wilson, Science and Mechanies, 505 Park Ave., New York 22. N. Y.

\section*{OF INTEREST TO WOMEN}

HUGE Pronts. Commercial Art offers unlimited opportunities to women with sincere desire to earn more money, upgrade thelr status and enjoy a brimiant uture with high financial rewards. Ask Schoors, Dept E-87. 4201 So. Broadway, Los Angeles 37, California.

\section*{PATENT SERYICE}

PATENT Searches-48 hour airmail service, \(\$ 6.00\). Including nearest patent copies. More than 200 registered patent attorneys have used my service, Free in vention Protection Forms. Write Miss Ann Hastings, P.O. Box 176, Washington 4 , District of Columbla

PETS-DOGS, BIRDS, RABBITS,
HAMSTERS, ETC.
MAKE big money ralsing rabbits for us. Information 25t. Keeney Brothers, New Freedom, Penna.

\section*{SCIENCE EXPERIMENTS}

\section*{Catalog of Special slide Rules and Calculating Alds. 10c. Dyna-side. Inc.,} 600 S. Michigan, Chicago 5. 111.

\section*{SEEDS, PLANTS I NURSERY STOCK}

RHODODENDRON - Azalea Hybrids from seed. Fun-Proftable-Healthil Point Pleasant. Penna.

\section*{START YOUR OWN BUSINESS}

INDEPENDENT Artist Make Big Money - \(\$ 150.00\) Week Up drawing commercial art and cartoons for advertising agencles, publishers, TV Studios, Magazines. many others. Art Jobs asslgned and sold direct ihrough mails. Vast income potentlal. Men and women. No previous experience needed. Fascinating home study Program Free Book. Continental Schools. Dept E-88, 4201 So. Broadway, Los Angeles 37 California

TOYS, GAMES \& ENTERTAINMENT
MATH. Old Campalgner, Games \(\$ 1.00\). Waco, 2063 East 18th St., Brooklyn 29, New York.

\section*{There's Something Wrong!}

AS A JUDGE at a science fair, I had the opportunity to speak to many electronically-oriented boys and girls. One incident last year stands out in my memory.
There was a young man who had prepared an elaborate display on the Esaki diode. His presentation left no doubt whatever that there wasn't a thing about tunnel diodes that this lad didn't know. He knew how they worked, what made them work, how and when they were invented, and how they could be used! By leading the discussion into more general electronic terms, we found out a disturbing fact. This boy did not know the resistor color code!

This brings us back to our early days of working in an electronic research laboratory, along with other technicians and a few high-powered electronics engineers. Now some of these engineers had Ph.Ds in electronics, and could E-I the very dickens out of R, but didn't know how to solder properly!

It's true that in an age of specialization such as ours, we can't devote too much time to the generalities. After all, the schools consider themselves fortunate to have enough time to devote different courses to the EEs than to the ChEs or CEs! At the same time, industry complains that the schools do not fully train the graduate. Many firms run courses for graduates hired.

The answer to the problem is an obvious one. If industry screams that the schools aren't doing their job, and the schools complain that they haven't sufficient time to turn out specialists, the electronically inclined youth must take the resistor by its leads and prepare himself!

How can you do this? Learn the fundamentals. Even though you may not be directly interested in communications engineering, get a ham license. Build your own equipment. This will teach you many of the shop practices, and several of the design techniques. Set up and construct the basic experiments in electronics so that you can see and understand them, rather than simply read about them in the text books.

If all our youngsters will come to the universities prepared with ' this knowledge, the schools will have to spend less time on teaching the basics. More time can be spent on the advanced details then, and everybody will benefit.

By the way ... Books like this can assist in your training!

\title{
IDENTIFY THAT DX
}

\author{
By C. M. Stanbury
}

TEN-FIFTY-EIGHT p. m. EST. The tinkle of a music box on 2326 kc received by an east coast DXer. The static was heavy and even though the ensuing transmission was in English, the identification announcements were lost. Despite this, he was able to identify this rare piece of low band DX as Radio South Africa.
How? Via it's interval signal, that music box. And by this method almost any rare catch can eventually be identified.
A classic example of the interval signal ("IS" in SWL jargon) is NBC's chimes. Whenever an American hears these, he knows that the station tuned is an affiliate of the National Broadcasting Co. However, with this major exception, IS are rare in United States and Canadian broadcasting. To the south, about one out of every two Latin American broadcast band stations have interval signals, and the practice is even more common in international broadcasting.
On the other hand, things are not quite as simple as they appear. Some stations use their IS only prior to sign-on so that listeners can tune them in accurately. Under these circumstances, the signal will be repeated for several minutes. A few of the larger broad-
casting organizations have two IS-one for tuning and the other for use between programs. Still other stations may use two at all times, for example, chimes plus a piece of music.

Armed with this knowledge you are ready to tackle the unknown in DX. Of course, to use this method, the interval signal must be heard. This involves careful and continuous monitoring of the target stations. (Lazy readers are excused-DX isn't for you.) Once the IS is heard, write down a description immediately so that no detail is lost. Be sure you put down every detail possible.

Some interval signals are considerably more difficult to put on paper than others. A gong followed by four ascending chimes is a cinch but you'll run into IS that are nothing more than pieces of music which you just have to remember. This isn't nearly as hard as it sounds, especially if you have any kind of musical ear. Further, a partial description can sometimes still be written. The IS of the Swiss Broadcasting Corp. is a lullaby suggesting the rocking of the sea (even though the nation is completely land locked!).

All of this would be simplified via a tape recorder but we are assuming the reader is

Figure 2 SAMPLE INTERVAL SIGNAL LOG
\begin{tabular}{|c|c|c|c|c|}
\hline COUNTRY & STATION & INTERVAL SIGNAL & NOTES & KC/5 \\
\hline COLOMBIA & La Voz de Bogota & Bar of lively Latin dance music & Immediately preceding ID & 5960 \\
\hline DOMINICAN REP. & R. Santo Domingo & Musical selection played slowly upon a harp & Announcements superimposed & 5970 \\
\hline EGYPT & R. Free Africa & Slow resounding drum beats forming an intricate pattern. & S/on \& S/off & 17895 \\
\hline FR. GUIANA & R. Cayenne & Guitar & S/on & 6175 \\
\hline GUATEMALA & R. Nacional de Quetzaltenango & Two long drown out chimes & & 11700 \\
\hline NETHERLANDS & R. Nederland & Deep voiced bells followed by beep type time signal & Prior to S/on & 11730 \\
\hline SOUTH AFRICA & R. South Africa (also commercial service Springbok R.) & Music box & Prior to S/on and briefly during some station breaks & 15080 \\
\hline SWEDEN & R. Sweden & 7 notes on a music box followed by clock striking & Prior to S/on & 11705 \\
\hline SWITZERLAND & Swiss Shortwave Service & Lullaby suggesting rocking of sea & Prior to S/off & 6165 \\
\hline (many) & Voice of America & "Columbia the Gem of the Ocean" & & 6155 \\
\hline
\end{tabular}

NOTES: R.-Redie. Most of these stations use many frequencies.
See WHITE'S hadio tog for further listings.
an average SWL who has to make do with the equipment available. Finally, while logging a mystery station, be sure to put down all the details necessary for sending a report after you identify it-signal strength, interference (either from static or other stations) and program details to authenticate your reception.

Begins the Hunt: First check the same frequency on the following day at the same time. Your target may show up again and you'll know whether it is the same station by the IS. If it doesn't show for the next couple days, checks should still be made once weekly -on the same day of the week that you originally encountered it.

Check the SW broadcast bands immediately above and below the original frequency range. If your station was near the low end of the SW spectrum, the band above is most important. If your mystery station was on 90 meters, the band to check would be 60 meters (see White's Radio Log for a list of the bands). If, while tuning 60, a similar program is heard, stop and listen for the interval signal (and of course the identification too). At
short wave's upper reaches the process is reversed, the DXer works down instead of up.

Finally, one may stumble upon the mystery signal again while tuning for something entirely different. Such a surprise really puts an extra thrill into DXing. How often does it happen? Well that depends directly upon how much and how carefully one listens.

For the beginner, this whole process will probably seem like a tremendous task. But after DXing a while everything becomes considerably easier. Not only do you develop your ear but you build up your store of interval signals. Those of the larger broadcast organizations, such as Radio Moscow and the Voice of America (which has relays in such far away countries as Greece and Ceylon), you will recognize at once.

However, to take full advantage of your DXing hours, a complete reference log of all interval signals must be kept. A basic form, such a \(\log\) is shown in Fig. 2. It should contain station name, country, complete description of IS, all other pertinent notes-was it used at sign-on, sign-off or in mid-transmis-

sion?, is this the home or foreign service? and it's a good idea to also include the frequency on which the IS was noted.

After a healthy list of interval signals has been assembled, it's time to make a cross index. First alphabetically by country which is particularly helpful for those nations having only one broadcast organization. Best for this purpose is a loose leaf note book. At least one page (both sides of the sheet) should be

 THE BWEABN Emonocherime compeation
man Ar. iantury.

 k.e.te 15,3 merome me

\(\qquad\)
allocated for each letter of the alphabet. Later, individual pages can be replaced with rearranged sheets or additional pages inserted into the lineup.

Another method, much more complicated but equally useful, is an alphabetical arrangement by IS type. For example: chimes, drums, gongs, musical notes, musical selections, etc. Endless varieties are possible here, depending upon the time each SWL has.

\section*{Receiver Code Practice Outfit}

OUTPUT TUBE, OUTPUT TRANSFORMER, AND SPEAKER', IN SHORT WAVE RECEIVER

SCHEMATIC DIAGRAM

EVERYBODY knows that you can practice receiving the code by listening to code transmissions on a short wave receiver. Did you know that you can practice sending code on the same receiver?
Tuning across the short-wave bands you will hear many steady noises and tones such as radiophoto transmissions, unbroken CW tones, unmodulated carriers, heterodynes and hum. To practice sending code, simply tune in one of these steady tones and break it up into dots and dashes by means of a transmitting key plugged into the voice coil circuit of the speaker, as shown in the diagram on this page. Mount a standard circuit-closing phone jack on the rear of the radio, and wire it as shown.

Some of the tones are quite pleasing to listen to, and you can have group practice by tuning the volume up loud. This trick is not recommended with ac-dc radios having one side of the speaker voice coil connected to the chassis, unless you isolate the speaker from the chassis. The installed jack can also be used for plugging in a series connected extension speaker for listening to short-wave in another room.-Art Trauffer.

\title{
Tricks for Improving Amplifier Frequency Response
}

\section*{You can improve an audio amplifier inexpensively. Special problems that might arise and a step-by-step treatment for a transistor audio amplifier are shown}

\author{
By FORREST H. FRANTZ, SR.
}

THE frequency response of an audio amplifier can be improved. Most inexpensive amplifiers are nearly flat at mid-frequency. The problem boils down to extending the range of response at the low and high frequency ends of the audio spectrum. Figure 3 shows the before and after frequency response of a transistor audio amplifier which received the treatment described here. The improvement is considerable.

Extending low response: Low frequency response may be improved by increasing the size of interstage coupling capacitors and by increasing the size of cathode (or emitter for transistor circuit) bypass capacitors. Figure 1 shows the capacitors in a typical circuit schematic. In general, use .1 mfd . to 1 mfd . coupling capacitors for tube circuits and 10 mfd . to 30 mfd . capacitors for transistor circuits. Use 100 mfd . bypasses for tube cathode or transistor emitter bypass circuits. Voltage ratings of replacement capacitors should be
equal to or greater than those of the original capacitors.

Extending high response: High frequency response may be improved by removing signal bypass capacitors in tube plate (and tran sistor collector) circuits. Circuit location is shown in the schematic diagram (Fig. 2). These capacitors are usually designed into inexpensive amplifier circuits to give the apparent effect of better low frequency response. Actually all the plate-emitter bypasses simply decrease the highs. Therefore the bass sounds louder in contrast.

Flattening the response curve: Extending frequency response range at the low and high frequency end of the audio spectrum will not necessarily provide flat response. However, the frequency range extension makes it possible to flatten response over a greater range of frequency.

The most accepted technique for flattening the frequency response of an amplifier is the

CATHODE BYPASS

\section*{(A) TUBE CIRCUIT}
incorporation of negative feedback. This technique feeds a small portion of the output signal back into an early amplifier stage in opposite phase to the input signal at that point. A frequency component that ordinarily receives a greater amount of amplification in the basic amplifier receives a greater amount of cancellation in the amplifier provided with feedback.

There are various ways to incorporate negative feedback. The method shown in Fig. 6 , where feedback voltage is taken from the output transformer secondary and fed to the emitter of the second stage, is one of the easiest arrangements to use. The beauty of this approach is that you only interchange output transformer secondary connections if necessary to obtain phase reversal. The output transformer in inexpensive amplifiers is the greatest contributor to poor frequency response, and hence should be included in the feedback loop. Note that the cathode or emitter bypass capacitor must be removed at the feedback point if a bypass originally was provided in the circuit.

Special problems: Special problems may arise when you improve the frequency response of an amplifier.
If the amplifier is ac or ac-dc operated, low frequency response extension may show up poor filtering and shielding. In this event you may have to increase the size of power supply filter capacitors, and you may have to shorten grid leads. In some cases the grid lead of the first audio stage will have to be shielded.

If the plate leads of the output audio stage pass too close to input stage (particularly grid) leads, the removal of plate bypass capacitors may cause positive feedback which is manifested as squealing or a tendency to squeal at the higher frequencies. You can eliminate this difficulty if it occurs by shortening and re-dressing leads. This difficulty will rarely be encountered in transistor amplifiers due to the low impedance levels involved.

A typical modification: The ready made Lafayette transistor amplifier PK-522 has attracted a lot of interest in experimenter

(B)TRANSISTOR CIRCUIT

Fig. 4: Top view of amplifier before modification. The two resistors and the capacitor indicated must be removed.

Fig. 5B: Underneath the amplifier board after modification. Two 100 microfarad capacitors and the 220 -ohm resistor installed.
fields. This amplifier, a basic component in numerous electronic gadgets, costs less than three transistors which an experimenter might buy to build his own. The frequency range of this amplifier is limited since its intended use is in inexpensive entertainment devices. This amplifier is used as an example to show how frequency response may be extended by making minor changes.

Curve A in Fig. 3 shows the frequency response of the PK-522 prior to modification. Note that there isn't a flat portion on the curve. Response is up 2 db from the zero db reference at about 2500 cycles, and response is down 3 db at about 400 cycles and 12,000 cycles.

Curve B in Fig. 3 shows the frequency response of the modified PK-522. The 3 db points occur now at 70 cycles and 30,000 cycles. This is a considerable range extension. While much of this improvement will never get through a \(21 / 2-\mathrm{in}\). PM speaker if you use one, the improvement in tone is noticeable. If you use a larger speaker, the improvement in frequency response will result in marked improvement of tone.

The modifications involved are the intro-

Fig. 5A: Top view of amplifier board after modification. The 10 microfarad capacitor is soldered into position.

duction of a feedback circuit, the addition of larger bypass capacitors in the input and output transistor emitter circuits, and the removal of the output collector bypass. Coupling capacitor changes are not required since the originals are 10 mfd .

Figure 6 shows the circuit changes. The 25 k resistor, the 10 k resistor, and the 10 mfd . capacitor in the output transistor collector circuit are removed. The resistors may be discarded. The positive terminal of the 10 mfd. capacitor is connected to the high (black lead) side of the output transformer secondary. A 220 -ohm resistor is connected from the negative terminal of this 10 mfd . capacitor to the emitter of the second transistor. The capacitance of the emitter bypasses in the input and output transistor stages is increased by connecting \(100 \mathrm{mfd} ., 6\)-volt miniature electrolytic capacitors in parallel with the original 10 mfd . capacitors.

\footnotetext{
MATERIALS LIST-TRICKS FOR IMPROVING AMPLIFIER FREQUENCY RESPONSE

\section*{Build the Amplagimik}

The Amplagimik-a source of audible sound and a utility test amplifier-will be a valuable addition to your shop equipment. A "readybuilt" amplifier is the heart of the instrument which you can build for less than \(\$ 10\)

\author{
By FORREST H. FRANTZ SR.
}

THE Amplagimik (Amplifier and Audible Generating Gadget) can be used as a utility test amplifier, an audio signal tracer, a microphone tester, and an audible tone generator.
How It Works: With the Amplagimik switch set to Position A., Capacitor C1 is connected in series with the amplifier and jack J1 (Fig. 1). In this position the unit functions as an amplifier and R2 is the gain control. It may be used as a utility amplifier for radio tuners or microphones, an audio signal tracer, an ac bridge null amplifier, or for any of the other numerous functions which an audio amplifier can perform.

With the Amplagimik switch in the L, M,

You can use the Amplagimik for testing microphones. lock the microphone in a vise and measure output.
or H position, a low, medium, or high frequency audible tone is generated. Capacitors C2, C3, and C4 are the respective feedback capacitors which turn the amplifier into a sound generator. Vernier frequency control is provided by R2. In this mode of operation the Amplagimik may be used to test microphones or any other test requiring audible sound.

Construction: Lay out and drill the front of the aluminum miniature case as in Fig. 2. Fasten the back with the self-tapping screws provided prior to drilling. This will minimize the chances of messing up the case during the drilling operation. Clean burrs from the edges of the holes and remove chips from the case.

Fig. 3: Begin the wiring after placing the parts as shown in the photograph. Solder all connections.

Fig. 5: Adding the pick-off lead and the feedback lead. Dress the feedback lead close to the chassis.

\section*{Desig.}

R1
R2
Cl
C2
C3
C4
S1
SPKR
AMP

\section*{MATERIALS LIST-AMPLAGIMIK}

Size and Description
\(47 \mathrm{~K} 1 / 2\) watt carbon resistor 5 K miniature volume control
\(.1 \mathrm{mfd}, 600\) volt paper capacitor
\(.2 \mathrm{mfd}, 75\) volt miniature ceramic capacitor \(.05 \mathrm{mfd}, 75\) volt miniature ceramic capacitor \(.005 \mathrm{mfd}, 75\) volt miniature ceramic capacitor subminiature jack
subminiature 2 pole, 5 pas. switch
10 ohm, 21/2-in. PM loudspeaker
3 transistor miniature amplifier
\(51 / 4 \times 3 \times 21 / 8\)-in. aluminum miniature case miniature knob
pointer knob
9 volt battery
Parts available from Lafayette Radio Co., 111 Jericho Turnaike, Syasset, L. I., N. Y.

Fig. 4: Modify the circuit board on the amplifier. Carefully remove the unused components (See text).

Fig. 6: Tape the entire back of the circuit board to prevent short circuits when it is installed in the box.

Cut the volume control shaft to \(3 / 8-\mathrm{in}\). length. Place the part of the shaft to be discarded in the vise during the sawing operation to prevent damage to the bushing.

Mount J1, S1, R2, and SPKR on the front of the case. Wire C1, C2, C3, C4, R1, J1, and R2 as shown in Fig. 3.

The amplifier (AMP) requires minor modification. Use Figs. 4, 5, and 7 for guidance in making the modifications.
1. Move the 30 mfd . capacitor on the bottom of the amplifier into position as in Fig. 5.
2. Remove the 10 mfd capacitor, 10 K resistor, and 25 K resistor from the collector circuit of the 2SB176 transistor as in Fig. 7A.
3. Connect the 10 mfd . capacitor into the feedback circuit shown in Fig. 7B. You can make use of one of the copper islands which was part of the previous wiring for the capacitor to feedback lead connection.
4. Add the pick-off lead (Figs. 7B and 5). It should be about 5 -in. long. The "pick-off" lead is the feedback path for the Amplagimik sound generator function.
5. Place electrical tape over the back of the amplifier board (Fig. 6).

The circuit diagram which is furnished with the amplifier and the part values printed on the components will serve as supplemental information in making these modifications.

Next, mate the front case assembly and. the modified amplifier connections. Figs. 1 and 8 give details. The battery should be wedged against the end of the case with a small piece of sponge rubber inserted between the speaker magnet frame and the battery. The amplifier fits over the back of the speaker and the battery. A short piece of wire passing inside the speaker magnet frame must be brought up through the two large holes to the top side of the amplifier. This provides "first order" anchoring for the amplifier. A small piece of sponge rubber fastened to the top of the output transformer with rubber cement will hold the amplifier firmly in place when the back is fastened.

Be sure to position the battery so that the self-tapping screws can't cause battery damage when you fasten the back of the case.

The switch plate is a card \(2 \times 23 / 4 \mathrm{in}\). The

Fig. 8: Match up the case and amplifier connections and mount the amplifier inside the case. Use sponge rubber to secure somponents such as the battery.
markings may be typed or hand lettered. (Fig. 10). Fasten with rubber cement or cellophane tape.

Deviations: The amplifier (A) input circuit shown in Fig. 1 was chosen to suit particular requirements. The arrangement shown in Fig. 9A is more desirable for general purpose use-particularly if there is a dc voltage component in the input signal. The input circuit shown in Fig. 9B is desirable if, in addition, you wish to have a higher input impedance. This arrangement causes a considerable reduction in amplifier gain.

The H position may sound bad on tone generation from a fidelity standpoint. If you find it to be extremely poor, you can increase the capacity of C 4 . The frequency range will decrease as you increase C4. You can lower the \(L\) and \(M\) ranges if you wish by making C2 and C3 respectively larger.

Fig. 10: Make up the switch plate from a piece of card. You can type or hand letter the information. Paste the card down to the panel with rubber cement.

\title{
2-in-1 \\ Car Antenna
}

\author{
Use for both CB and broadcast, by adding a \(\$ 2\) coupler By JOE A. ROLF, K5JOK
}

DON'T overlook using one of the new compact cowl-mount citizens band antennas just because it means drilling a new fender hole, or discarding the broadcast whip! You can solve this problem with the twodollar coupler shown in Fig. 1.
The surprisingly simple circuit is shown in Fig. 2. Briefly, here is how it works: Two tuned circuits are used, one consisting of C1 and L1 connected between the antenna and bc receiver, the other, C2 and L2, connected between the antenna and cb unit. C1-L1 resonates in the citizens band and the resultant impedance of the circuit isolates the bc receiver from the antenna at 27 mc . The impedance, however, is low at broadcast frequencies and the bc receiver is connected in normal fashion. Similarly, C2-L2 resonates in the broadcast band and isolates the cb unit from the antenna, while allowing normal operation in the citizens band.

A CU-2117A Bud Minibox is used to house the coupler and can be conveniently hung behind the dash when completed. Internal layout is shown in Fig. 3. The author used phono jacks in his unit, mainly to match connections peculiar to his equipment. Choose connectors compatible with your particular installation. Components are connected directly to the connectors and layout is not especially critical. Keep leads short however, and isolate each tuned circuit from the other as much as possible.

Adjustment is as simple as construction, but should be performed carefully to minimize possible losses. Tune the bc receiver to

a weak station in the middle of the broadcast band and adjust C 2 for maximum volume. If the bc receiver has not been aligned for use with your citizens band antenna, it may be necessary to touch up the antenna trimmer located on the side of the receiver. Adjust C1 with the aid of an S-meter, if your cb unit has one, or a field strength meter. Tune for maximum S -meter reading in the middle of the citizens band, or for best transmitter output on your favorite channel with the field strength meter. In absence of the above aids, C1 can be adjusted roughly by inserting a \#47 dial lamp in place of the broadcast receiver and tuning for minimum brilliance. You will note that adjustment of Cl is more critical than that of C2. Always adjust C1 last.

Some losses are involved even when the coupler is properly adjusted, but the author has found that losses are too small to effect either mode of operation. In fact, the fraction of a watt output lost is well worth the advantage of being able to listen to the be receiver and use the cb unit at the same time with a single antenna.

\section*{MATERIALS LIST-2-IN-1 CAR ANTENNA}
\begin{tabular}{|c|c|}
\hline Desig, & Size and Description \\
\hline Cl & 5.80 mmf trimmer capacitor, Arco 462, or equivalent \\
\hline C2 & 50.380 mmf trimmer capacitor, Arco 465, or equivalent \\
\hline 41 & 1 microhenry RF choke, Miller 4602, or equivalent \\
\hline L2 & 1 millihenry choke, Miller 4642, or equivalent \\
\hline J1, J2, 13 & jacks, select to match existing installation \\
\hline \[
1
\] & aluminum box, Bud CU2117A or equivalent \\
\hline
\end{tabular}

1 aluminum box, Bud CU2117A or equivalent

Parts locations inside the box reveals ample room for wiring and adjustments. All components mount on the connectors. Use connectors to fit present equipment.

\section*{Install a Tach for}

After the kit is assembled, you connect one of the leads to an a-c power line to calibrate the needle setting for your car. A simple serewdriver adjustment completes the job.

Space between the dash and steering column on this import car was limited. But a gaod fit was made by mounting the housing casting backwards. Kit brackets alse make over or Underadash mounting possible.

\title{
Only \$22
}

\author{
By BILL MchUGH
}

USUALLY we find tachs on the dash panels of sports cars or big trucks but we're hard to sell on the idea of installing a tachometer in the family sedan.

But a new assemble-it-yourself kit offered by Allied Radio is easy on the pocketbook, and we found it not too tough to assemble. It looks as though it could pay for itself if it helps ward off just one trip to the car hospital.

An electronic tach feeds on pulses from the distributor. Like a doctor's stethoscope, it counts engine heartbeats. With the usual kind of electronic tach found on the console in any well equipped garage, the mechanic reads engine speed while the car is standing still. This is fine for troubleshooting and tuneup, but a tach anchored to the garage tells you little about road performance.

Mount a tach on the dash and a glance at the dial gives you an immediate report on the engine performance, while you're driving. And of course, you can use it for tuning too.

The kit (Fig. 2) takes about a full evening to assemble. Instructions in the manual are very complete, include circuit theory, and even tell you how long to cut the wire leads on the parts. A good pair of diagonal wire cutting pliers and a small pencil-type electronic soldering iron are absolutely essential. You'll find it would be impossible to assemble the kit using the larger wand-type soldering irons because the parts are small
and mount closely together behind the meter case.
Use a Heat Sink when you solder the transistor and diodes. Heat sink is electronic jargon for an improvised clip or small long-nose plier with which you grip the wire lead of a small part. The idea is to make a good firm contact between the wire lead and a much larger mass of metal. When your soldering iron touches a nearby joint, heat travels down the wire lead and is absorbed instead of reaching the part itself and burning up the innards.

The complete electronic tach circuit mounts on a small plastic chassis board. When you've finished soldering the last part, you fasten the chassis to the meter posts and install a lamp through the back of the meter to illuminate the dial. A four-conductor cable feeds out the back of the assembly to the engine compartment.

Calibration has been engineered for simplicity. With most electronic tach circuits, you have to calibrate with a scope. The reason is that two, four, six, and eight cylinder systems deliver a different number of pulses per second. Variation in parts also dictates calibration. Allied Knight-Kit designers solve the problem by using your 60 -cycle power line as a convenient frequency source, along with a special probe in the kit. You connect one of the four tach leads to the a-c line. The other leads run to the car battery and ground. A table indicates the setting on your dial that corresponds to the number of cylinders in your engine. Once you set the calibration control pot, you're ready to install the instrument permanently.

The kit comes in two distinctly different versions, one for 12 - or 24 -volt positive ground ignition, and the other for 12 - or 24 -volt negative ground cars. You can tell which kind of wiring is used in your car by checking to see which pole of your battery connects through a ground strap to the main frame. If your car runs on a 6 -volt battery, you can use the tach but you'll need an auxiliary 9 - or 12 -volt bat-
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|r|}{MATERIALS LIST-ELECTRONIC TACH} \\
\hline \multicolumn{2}{|l|}{No. Req. Size and Description} \\
\hline 1 & Catalog No. 83 Y944 Kinight Kit for 12 . or 24 -volt negative ground tars (\$21.95) \\
\hline & Catalon No. 83 Y 980 Knight \(\stackrel{\text { or }}{\text { Kit }}\) for \(\mathbf{1 2}\) - or 24 -volt positive uround tars (\$21.95) \\
\hline & 9 -volt radio battery with clips (required only on 6 -volt cars) \\
\hline & above items available Allied Radio Corp., 100 N. Western \\
\hline Ave., Chic (10 cents) & cago 80, III. The Tach Kit Manual can be ordered separately s). \\
\hline
\end{tabular}

Circuit wiring can be done in about three hours. Parts mount on a plastic chassis which fastens to the back of the meter dial. A built-in lamp illuminates the translucent dial.

tery. An unusual kit feature is zener diode regulation which provides \(3 \%\) accuracy despite temperature or voltage variations.

Using the Tach. Most important of tuning adjustments is setting the carb for the engine's recommended idling speed. You may want to allow an extra loop of cable when you install your tach so that you can temporarily place it where you can see the dial while you work on the engine.

The tach acts as an auxiliary speedometer since engine speed in standard transmission cars is directly proportional to road speed. You can detect clutch slippage if the tachometer increases its reading more than the regular speedometer as you accelerate.

An extra red pointer on the dial can be set at any reference point. To get maximum fuel economy in standard shift cars, set the pointer at an rpm equivalent to \(30-40 \%\) of maximum engine speed. Always accelerate until the tach needle lines up with the red pointer, shift at this speed and you'll save gas.
If you want maximum drag starts, determine your rpm value for fully developed horsepower. Then set the pointer at this rpm and accelerate until your engine is up to 110\(120 \%\) more than max and then shift gears.

\title{
How to Fix Your Own Radio
}

You don't need a big shop or elaborate equipment to make simple radia repairs. A small meter, a lube tester al the corner drug store, a bit of patience and some knowledge is all it takes. This story gives you the knowledge.

SUDDENLY, the sweet music disappears, and the radio goes dead. Naturally, you take a few tentative corrective steps, like slapping it on the side. No help. You hit it on the top. Still doesn't work. Should you try to repair it yourself or call a pro? Hmm . . . 'There's a big ol' tube-tester down at thecorner drug store

The important thing to remember is that you must know where to stop. Don't get in too deeply, or the repair bill to rehash your do-it-yourself attempt will exceed the cost of a new radio! Instead, work calmly, carefully and methodically.

About \(80 \%\) of all radio troubles are tube troubles. Check the bottom or back of your set for a diagram showing the tube locations, so you can replace the tubes in the correct sockets. If there is none, make a picture of the chassis, using a circle for each tube location. Pull the tubes out gently, one at a time, and make a note of the tube number (usually frosted or etched on the top or side) in the appropriate circle. If you still have any doubts, you can use consecutive numbers and mark both tube and socket with a wax pencil. Many tyros in this game look at a black or silver spot in a tube and say "Hmm . . . burned." Nothing could be further from the
truth. The black or silver mark is caused when the tube is manufactured, and they burn out excess air by flashing the "getter." No, the only way to tell if a tube is good, is to test it on a tester. (By the way, a tube can "light" and still be bad!)
If you use the tester at a local drug store, test the tester first. Make sure that all the knobs on the tester read "O" in their minimum positions. Some of these birds deliberately set the knobs back so you get a lower reading than you should, and you wind up buying tubes you don't really need!

What happens if all the tubes check OK? Are you going to give up now? You don't have to. What you will need is called a VOM meter. Its full name is volt-ohm-milliameter. These handy-dandies come in a wide range of sizes and types to fit your pocket or purse. Armed with this device, and with the radio disconnected from the wall outlet, follow the next steps. First decide on the symptom, and then localize the trouble. Replace the suspect part and when the radio perks up again, think of the money you've saved and enjoy the music!

\section*{No Sound At All:}
1. Bad tube-May be in any circuit. Check all tubes for emission, leakage, and shorts.
2. Bad rectifier-Check all rectifiers with VOM as follows: Attach one lead from the VOM to the rectifier's anode and one to the cathode. Make note as to whether the needle moves or not. Reverse the leads and follow the same procedure. If the needle moves for both tests, or if it does not move for either test, the rectifier is bad. If the needle moves for one test, but not the other, the rectifier is good.
3. Open circuited loop antenna-Check for continuity with the VOM.
4. Open transformer winding-Check the power supply transformer and choke for continuity.
5. No power-Check line cord (or batteries), and fuses. Check switch on volume control.

\section*{Weak Sound Only:}
1. Bad tube-Check, power supply and audio amplifier tubes.
2. Bad potentiometer-Check volume and tone controls for shorts, opens, and correct resistances.
3. Bad speaker-Check for continuity; also, check physical condition.
4. Open circuited loop antenna-Check continuity.

\section*{Distorted Sound:}
1. Bad tube-Check all.
2. Bad filter capacitor-(The filter capacitor is the largest one and usually has more than two leads.) Check for shorts. Warning: Be sure to discharge the capacitor before touching it.
3. Bad audio capacitor-Check all capacitors in the audio amplifier section..

\section*{Static Sound:}
1. Bad tube-Check all.
2. Bad speaker connections-Check wiring to speaker and speaker transformer.
3. Loose ground connection-There should be \(100 \%\) continuity.
4. Bad audio components-Check audio bypass capacitor.
5. Dusty tuner-Clean dust from tuning capacitor plates.

\section*{Buzzing Noise:}
1. Poor dressing-Check shielded wires and wires with long leads.
2. Loose ground connection.
3. Shorted capacitor-Check filter and bypass capacitors.
4. Bad resistor-Check for shorts and opens in grid circuits.

\section*{Hum:}
1. Bad audio amplifier or power supply tube.
2. Shorted filter capacitor.
3. Poor ground connection.
4. Tube leakage-Check oscillator, mixer, and RF amplifier tubes.

\section*{Signal Only Over Part of Dial:}
1. Bad oscillator tube.
2. Shorted tuning capacitor.

\section*{If the Fuse Blows:}
1. Bad tube-Usually shorted power supply tube; check all filaments.
2. Shorted filter capacitor.
3. Shorted rectifier.
4., Shorted transformer winding. (This list does not include alignment problems because, (1), they are rare in a factorybuilt radio, and (2), they require rather expensive testing equipment.)
INFORMATION: If you are not sure where to begin working on your radio, you ought to obtain some information about your set. The simplest way to get this data is to write direct to the manufacturer. If your set is of recent date, he can probably supply you with the information you need-either free or at a very low charge.
However, if he cannot, there are other ways of securing this information. Supreme Publications (1760 Balsam Rd., Highland Park, Ill.), puts out data books containing specific service instructions, diagrams, etc., covering most popular radio sets since 1926. The books cost from \(\$ 2\) to \(\$ 2.50\), and each book deals with a separate year of manufacture.

Another company, Howard W. Sams (1720 E. 38th St., Indianapolis 6, Ind.), publishes the famous "Photofact" folder sets. Each folder contains service data concerning one receiver make and model, including schematics and photos of the chassis, troubleshooting hints, replacement parts, etc. The folders are available singly at \(\$ 1.95\), in small sets, or in large filed groups. A complete index of all the folders since April, 1946, is available free on request.

Another problem you may encounter, especially when servicing very old radios, is the unavailability of certain parts. Many of the old four, five, and six prong tubes used in the "antique" sets are now obsolete and no longer available from regular tube outlets. There are, however, a number still around, and they are not hard to obtain. Many of the companies that deal in rebuilt, used tubes have the rare ones in stock, and at very low prices. Your local radio shop might also be able to dig up a few old ones for you if you ask. Some of the companies that sell the old tubes are:

Micro Electron Tube Co., Box 55, Park Station, Paterson 3, N.J.
Tru-Vac Electric Co., Harrison Ave., Box 107, Harrison, N. J.
Electronic Market, 3750 E. 10th Court, Hialeah, Fla.
Teltron Electric Co., 428 Harrison Ave., Harrison, N. J.
Video Electric Co., 9-15 6th St., Harrison, N. J.

\title{
We sent this report to the Heath Company, where It was reviewed by Al Robertson, amateur radio products manager for Heath. His comments are in italiss...
}

\section*{The Kit Parade}

\section*{(Heathkit "Marauder" HX-10 Transmitter)}

\author{
By ROSS R. OLNEY
}

ELECTRONICS engineer or average hobbyist, almost anyone can build the Heathkit Marauder, but it would help to be an electronics engineer (which I'm not). In fact, in the preliminary instructions it is noted that this is no kit to begin with, no "first attempt" as it were. The manufacturers suggest you warm up on simpler kits first (Heathkits, of course), then swing into the beautiful HX-10.

We had a letter from one delighted HX-10 owner who stated this was the first kit of any type that he had built. However, he was an old-timer and "homebrew" fan so this opening statement still is to be seriously considered.

But first, what is it we're building. The HX-10 Marauder is the transmitter that appears in the dreams of every amateur radio operator. It's a complete, desk top unit with CW, AM, FSK, LSB and USB modes of operation, and with every mode (except AM) operating on a full 180 watts input on all bands. Covering \(80,40,20\), 15, and 10 meter amateur bands, the HX-10 employs heterodyne conversion circuitry and a temperature-compensated VFO for maximum frequency stability.

Heterodyne circuit allows use of single range, low frequency VFO, thus adding to stability.

All modes are front panel switch selected with the function switch, which provides Off (which draws 4 watts due to the ever-burning VFO tubes), Standby, Push-to-talk and VOX, Spot and Manual positions. A spinner type tuning knob and a \(10-\mathrm{in}\). slide rule scale are used for VFO tuning, with a gear ratio of 165-to-1 for excellent reset ability, tuning ease

FIG. 1: Resistors, capacitors, tubes, coils, crystals and other things the builder probably won't oven recognize until construction begins.
and minimum backlash (with HX-10's spring loaded dial).

Constant operation of VFO filaments does not significantly affect life (mine has been on a year now) and does wonders for warm-up stability.
All VOX controls in the Marauder are front panel mounted for easily adjustable operation to suit conditions. Twenty-one tubes are used, included rectifiers and voltage regulators. Silicon diodes are used in the bias supply for long life and trouble free operation.
All our HX-10 owners seem to prefer the "all-out-front" location of the controls.
If you don't understand some of these things, don't feel bad. Neither did I when I started the HX-10. Anyway, the idea was to see if I could build it cold, without extensive

electronics experience. Actually, I had built a volt-ohm-meter in the past, but I didn't mention that to the editors of Radio-TVExperimenter and it did, in a way qualify me in the "warm-up" clause of the instructions.
If you know what a resistor looks like, have a vague idea what a power transformer does, are able to solder without splashing (and you'll see how important that is later) and know what "heat-sink" means, unpack the carton. Tear off the tape and witness the gee-whiz mess of parts you have (Fig. 2). Hundreds of them . . . thousands of them. Resistors that would put the electronics store to shame, tubes, capacitors, nuts and bolts, and all packed neatly in the \(19 \times 11 \times 16-\mathrm{in}\). cabinet of soft green.

We like to think most customers are impressed by our kit packs and the array of quality parts and that "mess" is an unfair comment.

As with most kits, once you unpack the carton the damage is done. Even if you decided to chicken out, you couldn't get everything back in to return it. Wonder what they pay the genius who packs these things ... ?

A result of careful planning by a group we call our "kit packing committee" which includes the fellow who sells us the boxes.

But let's take it step by step and see what happened to me, a real neophyte in the complicated electronics game. First thing was to complete the "dog" work, installing the terminal strips and grommets in the chassis base assembly. Duck soup (Fig. 3). Who says I can't qualify for my general ticket?

We stress in a kit of this size, that the builder work at a leisurely pace in a well-lighted,

FIG. 3: Above, This is the wired chassis base assembly. The arrow shows the two backward mounted diodes, the only confusion resulting in error in construction.

FIG. 2: Left, Underside of the chassis top plate. The wiring at the arrow was the most complicated encountered, especially after mounting this plate on the base.
comfortable area with plenty of table space. By working a few available hours at a time, the construction is the pleasure it's intended to be and there is minimum reason for error.

One thing did bother me at this point and that was finding the parts . . . and this early in the game, too. Perhaps they could be better identified in future kits, or at least better separated according to sack number, box number or something.

We are still working on this area of kit packing, but any solution will involve increased costs and kits are designed to save money by "doing-it-yourself."

Also at this point, I made my first (and only major) mistake, due to a parts substitution. Two 500 ma tubular silicon diodes were called for in the instructions and the part numbers did not match with the two in the kit. In the confusion, I managed to mount them backwards, later causing two surge resistors to burn out. No real harm done, other than to my pride before my wife, who was happily helping.

Always possible despite our best efforts, particularly where so many parts are involved. Defective parts from the supplier becomes somewhat of a problem since you can't \(100 \%\) inspect resistors, capacitors, etc.

So on to the chassis top plate, where the real wiring began. Clear cut, concise instructions made the job easy. If each wire on each component had been 3 in . long ... ? But then the transmitter would be \(6 \times 6 \mathrm{ft}\)., so I skillfully managed the many solder connections successfully. And it was fun.
But, it is time consuming, which is the only difference between the HX-10 and any other
kit. Each step in any kit assembly project is simple in itself.
Note the pre-formed cable harness, a real help both time and nerve-wise.

Most customers have to strip hookup wire and a lot of long wire runs get messy unless they are laced.

My major mechanical problem, probably no news to experienced kit builders, came when I attached the chassis top plate to the base assembly. I suddenly found myself with a maze of wires and components right where rows of screws were to go. In fairness to Heath, I must admit that they previously specified dotted lines on the top plate as areas to be left free, but in many places I went over the lines because I just couldn't find any other available room. In any case I bent and pried and unsoldered and re-soldered and managed to line up the two parts, after which I rechecked all wiring for shorts. I figured I had it made until the next instruction called for the mounting of a long mode switch right down through the middle of my maze.

This is a little tricky but, with the harness running under the chassis top lip, the use of sheet metal screws (done in some cases) runs the risk of shorting the harness.

The job was really getting challenging. And at this point I wouldn't have quit for the price of the outfit. Others had done it without blowing every fuse in the neighborhood and so could I. I would suggest, however, that Heath either underline or italicize the "dotted line" instructions for clods like me.

With the mode switch, which calls for easy pre-wiring, construction became easier. Regarding all this wiring of the top plate, Heath has simplified the builder's job by not only calling out the value of the parts on the instructions, but also giving the individual colorcode of each part as it is used. It doubtless prevents many simple mistakes and also saves time until the builder has committed the various codes to memory.
They have also specified coffee breaks and resting periods during construction and with this I heartily concur. This is no job that jumps together just because you wave a soldering iron over it. It is a challenging job with a fine piece of equipment as the result, and it deserves your complete concentration (which you cannot give it by working too long at a stretch).

My earlier comment on this subject was premature.
The first of two missing parts panicked me in the wiring of the phone jack. A .01 mfd ceramic disc capacitor from jack to ground. And this does shake you, Either they made a mistake (and they hadn't so far), or you've connected a wrong part to a wrong part. You'll never know, friend, until you plug it in. At this point, to re-trace all steps

FIG. 4: Beginning to look like a completed unit, the front panel is mounfed and switches installed. Meter and dial installed, along with final amp shield.
would take hours. The fact that the part is only worth a few cents doesn't seem to count with all the mental anguish you go through. But circle the instructions at that point and proceed. It's only a bleeder capacitor anyhow and can't affect the coming construction, just so you wire it in later.

This is a wise decision. It is possible that the part is missing, but after a kit has been on the market more than six months, it is most likely an error in construction.

Mechanical work on the top of the chassis was very interesting and a credit to the manufacturer. Each part fit exactly as it was supposed to, and each was easily identified through part numbers and pictures. The front panel went on equally easy, and the whole works began to look like a transmitter (Fig. 4). The VFO (Fig. 5) is built as a separate unit and is a welcome break from horsing around a chassis that is beginning to get heavy. (Total finished weight- 85 lbs .) It is attached to the chassis later.

The other missing part, though in this case it could possibly be due to careless unpacking, was the dial cord spring. I found however, in a brilliant burst of inventiveness and at the sacrifice of my new ball point pen, that the little spring around the cartridge works just as well.

This is an example of customer ingenuity of which we take some pride. However, we regret the problem that made it necessary. Maybe the spring will turn up in the vacuum cleaner.

The final amplifier, as well as the intermediate stages, is completely shielded in the HX-10. On top of this cage the blower fan motor is mounted for heat control. I found myself wondering if such a fan would actually keep the solder from melting when I finally worked up the nerve to plug the whole works into the wall, but that was only lack of confidence on my part. Actually Heath thought of that and cautions the builder that

FIG. 5: The VFO is built as a separate unit and then mounted on chassis top plate. It is temperature compensafed and always stays "on" regardless of position of function switch. VFO drows only 4 watts.
just because he has installed the line cord does not mean he can sock it in the wall. Besides, it isn't supposed to keep solder from melting . . . it doesn't get that hot.

The gearing was interesting and providing instructions are carefully followed, fit perfectly. No problems. I'll never forget the feeling of superiority that flooded over me as I turned the main VFO tuning knob and witnessed the little dial pointer moving surely back and forth across the dial. This is one of those eagerly awaited moments when you call in the family to witness your triumph.

Kit dial drives that feel "factory-built" are difficult to achieve. The HX-10 is an example of a good solution to the problem but we keep striving for even simpler, velvet drives.

With the end in sight, I plunged happily on almost wishing I could swing into a Heath Linear Amplifier before I cooled off. The final step-installation of shiny chrome knobs -and the instructions casually informed. . . "This completes the assembly of your HEATHKIT HX-10 Transmitter."

But that couldn't be . . . I still had many pages to go! Then it dawned on me as I browsed forward through the manual that the Heath Company didn't have near the confidence in me that I had in myself. That's right . . . the "In Case of Difficulty" section, and before that, the inspection and checking sections.
"Inspection, checking, and alignment sections."
I breathed a sight of relief. Not only did they tell me how to build it, but now they were going to tell me how to make sure I had done it right. An excellent piece of strategy that I am sure corrects many mis-
takes before they can be harmful. I was grateful knowing that, for the moment at least, I could put off the dreadful, throatclutching moment when she had to be plugged in.

This is the exact intent of the inspection and resistance checks.
So I checked . . . and checked . . . and checked. After all, this is a piece of highvoltage equipment and with guys like me building it, anything can happen.

But I could delay no longer. The instructions insisted it was time. With my family safely in the far end of the house, and with my insurance premiums paid to date, I grasped the plug. With a deep breath, the kind you probably take when they sit you in the chair, I socked it home.
Nothing happened.
Already I knew I was ahead of the game. Particularly since this set has a temperaturecompensated VFO and draws four watts with the switch in the OFF position due to the heaters in the VFO tubes being on all the time. I looked and sure enough, they were glowing!
More testing followed with a VTVM recommended, though initially I used a VOM. Then came the real moment of truth. Switching on the set.

At this point, in a rolling cloud of smoke, I discovered my mistake of the first day. You remember, installing the diodes backwards. A silent moment followed in memory of the two surge resistors that had passed on, and my troubles ended.
We are sorry the author did not enjoy the kit building thrill of success on the first try. However, when smoke appears it is not diffcult to locate and correct the trouble.
Replacing the resistors was easy, and should not have been necessary at all. (I blamed Heath, though, when my wife asked about the pall in the house.)

All in all, this was one pleasant kit to build, though attention should be paid to Heath's suggestion that you don't go into it absolutely cold. I wouldn't recommend it to the next door auto mechanic, but to anyone interested in hamming, it should be a "challenging cinch." The instructions say 50 to 90 hours and it took me 63 for the initial construction and several more for the checking procedures. And I have a transmitter that I'm really proud of . . . all band and plenty of power.

Too bad there is no comment on alignment and "on-the-air" performance. The HX-10 has the advantage of easy alignment with simple test equipment even though it produces an SSB signal equivalent or superior to any other gear on the market (our humble opinion!).

As soon as my novice ticket comes in, watch for me on the air.

\section*{Auto Radio Booster}

Fig. 1: With the booster installed, you can expect better quality from your transistor radio in the car.
unit is connected. The auto booster is wired for negative ground operation. A 10 k -ohm resistor is placed in the leg of pin 6 for dropping the screen grid voltage.

Since the RF booster is a high gain amplifier all precautions must be taken to eliminate car radio ignition interference. The amplifier is constructed inside a metal chassis for shielding and a choke and capacitor bypasses the interference to ground. The tube socket is mounted on a printed board with printed

Fig. 4: With the cover removed, we see the location of the major components. Note capacitor Cl protruding.
wiring. Although the unit was constructed on this principle, a perforated board will do as well. In the latter case use ordinary hookup wire to connect the circuit. The printed board is mounted on two small fiber spacers for insulation.

The A lead wire, female antenna jack and toggle switch are mounted on the right side of the aluminum chassis. Mount C5 and RFC2 as close to the toggle switch as possible. The variable tuning capacitor is mounted on top of the chassis for easy operation. All of the small parts, shielded RF coil, and tube socket are placed on the printed circuit board. A perforated board was used for the front of the metal chassis and L2 is wired or secured to this board. The flat ferrite coil can be wired to the board by wrapping a couple of turns of plastic tape over the coil so the wire will not bite into it.

The cabinet is complete providing a lip, or shelf to hold the small transistor to the radio booster. This metal shelf sticks out about two inches with rounded edges. The edges are rounded to prevent scratches or torn clothes. There are several ways of mounting the booster to the car. Extend the bottom metal plate three inches and bolt to the metal under-dash with metal screws. Rubber feet can be secured to the bottom and the unit left sitting atop the car dashboard. Another method is to bolt the unit through the back
into the car dummy radio plate.
Testing the unit: Check the wiring of the unit several times before placing the booster in the car. Leave the front perforated board loose while checking the unit. Use regular flat ac line cord for the A lead to the radio fuse and hook it to the car ignition switch. Be sure the negative or ground lead goes to a good chassis ground.
The booster unit should be secured permanently in place. Switch the unit on and the heaters of V1 will light. Plug the outside antenna into the female jack. Hold the perforated board in place and set a small transistor radio in front of it. Tune the variable capacitor and the stations will pour in. If nothing happens, check the polarity of the A lead. Use an ohmmeter to check if the switch is operating. Check the plate and screen for positive voltages.

The transistor radio is operated in the usual manner and is held to the perforated board with an elastic band. Tune in a station around 1000 kc and tune the variable capacitor for maximum volume. Note that the variable capacitor will tune at maximum volume close to the same frequency as the transistor radio. The transistor radio may be moved to the right or left of L2 and supply the gain received from this small booster. Next check for car radio noise. In most new automobiles, ignition noise is very low. It is best to place a capacitor on the generator post. Do not mount it to the red tagged lead. Place a distributor suppressor in the center lead of the distributor cap. Mount as close to the distributor as possible. If noise still persists add a capacitor to the hot or A lead going into the side of the distributor. Sometimes noise is picked up by a bad ground on the antenna itself. Loosen up the antenna and scrape off any residue so the metal lip will bite into the fender of the car.

Fig. 5: The side view shows the on-off switch and the antenna jack. The line cord connects to the battery.

\title{
Sound Control Your Recorder
}

\section*{Why let tape go to waste? Add this device to your recorder and it will only move the tape when there is a sound to record . . :}

\author{
By JAMES A. McROBERTS
}

TAPE recording of intermittent sound presents several problems, which have different solutions. For example, the tape may be run continuously. This solution gobbles up a large volume of tape which requires playback and editing with waste of the unused portions, and splicing.

The incoming sound may be monitored by an operator. This is a tedious, monotonous task for a nature lover seeking recordings of young birds hatching or a detective listening to sounds from "bugged" premises. He is apt to become drowsy-half asleep-in the course of time. His reaction time to pull the tape transport lever to forward in order to start the tape may be several seconds if he is fatigued by a long wait. The reaction time will be at least a second, under the most favorable conditions. Much of the valuable sound may be lost, which the detective overlooked, or didn't hear too well in his excitement to start the tape moving to record. If he always remembered correctly, there would be little need for recording. Any commotion in a bird's nest may precede sound valuable to the naturalist, and he too will miss some of his sound if unduly delayed.

An automatic relay actuated by the sound to be recorded is a preferable solution to the problem. Such a tape transport relay may also be very valuable in recording conferences or any activities where there are long quiet periods. A tape recorded in this way will be much less fatiguing to listen to on playback. Great tape savings may also be effected.

This relay takes the place of the human monitor and acts far faster than even he can when fully alert. Less than a second of reaction time is lost so very little of the desired sound is missed. Furthermore, the operator is not chained to the machine; he merely supplies it with tape occasionally.

Circuit Description: The block diagram (Fig. 1) is an overall picture of how the device works and is supplemented by the actual circuit schematic diagrams Fig. 2 and is pictured in Figs. 3, 4, and 5.

Most tape recorders have provision for monitoring while recording with earphones.

Even though these may be described as auxiliary outputs for listening during playback, almost all are connected across the output transformer while recording. The high impedance input of the first tube (V1) of the relay does not load the output circuit of the recorder appreciably-it is better than 1 megohm (the impedance of P1 and C7 in series). Even when connected to a low impedance output, the device will function well since this type of impedance mismatch is of little consequence. (There is usually ample signal for this sort of duty.)

Potentiometer P1 serves to vary the input to V1 thereby acting as a threshold control. Sound below a certain level (intensity) will not actuate the following relay tube section V2, which is the other half of the single 6SN7GT.

Amplified sound is fed to the grid of V2 through coupling capacitor C6 and is an ac signal. Shunt connected crystal diode D1 rectifies this signal forming a positive going voltage. Whenever the positive bias developed across R3 and P2 (the grid resistors of V2)

BLOCK DIAPFAM
is sufficiently positive, the plate current increase of V2 will cause the relay to pull in. The mechanical relay snaps to the energized position closing the "A" circuit contacts 2 and 3. These act as a switch in the motor circuit of the tape recorder to start the motor. With the tape transport lever on forward, the tape will move when the motor starts, making a recording. The amplifier of the tape recorder is arranged to function normally whether the motor relay is on or off. The device is actually recording in one spot until the tape is set in motion. Less than a half second is required to get up to normal speed and some recording starts even before this speed is reached.

The time constants of the grid resistor R3 and the shunt capacitor C5 are short. They have been made deliberately so. The relay must close quickly on sound at a level above that determined by the setting of P1. Without some alteration of the circuit, the relay would open very quickly-as soon as the positive charge on C5 had leaked off to the drop-out point of the tube and relay. Sound may drop to a very low level during lulls in the conversation, between bird calls, or other sound of interest. An auxiliary time delay has been incorporated into this circuit which is adjustable by potentiometer P2 from less than a second to about 35 seconds. A longer delay can be had by increasing P2 from its given value of 1 megohm, to 2.5 megohms.

The delay is due to the insertion of a time constant capacitor C 3 by means of the " B " contacts of the relay. This capacitor is connected to the cathode of the second tube sec-

\section*{MATERIALS LIST-SOUND CONTROL YOUR RECORDER}
\begin{tabular}{|c|c|}
\hline Amt. Req. & Size and Deseription \\
\hline 1 & \(6 \times 6 \times 6^{\prime \prime}\) utility cabinet with built in chassis, ICA \#3823 \\
\hline 1 & octal socket, Amphenol 77MIPg \\
\hline 1 & 6SN7 GT tube \\
\hline 1 & 50 ma selenium rectifier \\
\hline 1 & pri 117 v; sec. 6.3 v, \(0.6 \mathrm{amp} .125 \mathrm{v}, 15\) ma power transformer, Stancor PS 8415 \\
\hline 1 & 1N34 crystal diode \\
\hline \(\frac{1}{2}\) & fused attachment plug EI Menco type El-32 \\
\hline 2 & 1 -ampere fuse 3AG.1A \\
\hline 2 & 1 lug terminal strip \\
\hline \(\frac{1}{2}\) & 2 lug terminal strip \\
\hline 2 & 1 meyohm potentiometer, linear taper \\
\hline 2 & \(20 / 20\) mfd 150.y capacitors. dual section electrolytic \\
\hline 3 & \(0.01 \mathrm{mfd} 400 \cdot v\) capacitors, fixed paper \\
\hline & 5000 ohm coil DPDT contact relay, Potter \& Brumfield LM 11 \\
\hline & plug, phono (or to match tape recorder monitor jack) \\
\hline \(\frac{1}{2}\) & 0.001 mfd capacitor ceramic disc \\
\hline & plugs, male attachment with rubber body \\
\hline & 100k 0hms 1/2.w \\
\hline & 4.7 k ohm l-w resistor \\
\hline 1 & 270k \(1 / 2-w\) resistor \\
\hline & \(100 \mathrm{ohm} \mathrm{1.w} \mathrm{resistor}\) \\
\hline & 1k ohm 1-w resistor \\
\hline 9 ft . & line cord use 5 ft . for relay line cord and remainder \\
\hline ft . & shielded cable for sound input \\
\hline \[
\frac{2}{2}
\] & dial knobs (one with scale) \\
\hline & rubber arommets \\
\hline
\end{tabular}

\(8 \frac{\text { ALL HOLES FOR } \frac{t^{\prime \prime}}{32} \text { CLEARANCE EXCEPT }}{\text { SOCKET HOLE } 1 \frac{⿻^{" \prime}}{\prime \prime}}\)

tion V2 during the off time of the relay and is charged to cathode potential. When the relay is energized, this capacitor's positive terminal is effectively connected to the grid of the tube. The charge on this capacitor (C3) leaks down to the positive grid potential through grid resistor R3 and the potentiometer P2. (P2 varies the time constant or rate of leak of this charge.) Since P2 is variable, it can be adjusted manually to fix the delay time.

With some sound coming in the charge on C3 and the remaining shunt capacity in the grid circuit will remain positive. When the sound stops, the charge on C3 will leak off and the relay will eventually open. Any sound sufficient to trigger the relay repeats the cycle. In practice, no interruption in the recording will occur if the sound is reasonably constant in volume.

Construction: Figures 3, 4 and 5 show location of the principal parts. The entire unit is assembled on a built-in chassis welded to the front panel of a metal utility box. Figure 6 has been provided for location of holes. Spacings are not critical and components may be used as templates in laying out the holes to be drilled.

Holes for all parts on the chassis and the two potentiometers on the panel should be drilled prior to attempting to mount parts. Drill the \(11 / 4 \mathrm{in}\). hole for the socket opening last, or the chassis may be bent by drill pressure. Do not mount the relay until all other work has been accomplished-a slip of the soldering iron or other tool may ruin a new relay. Mount the selenium rectifier as one of the last jobs. Solder splashes between its plates will spoil it. Mask the tube socket with a piece of Scotch tape to prevent solder and wires from falling into its openings.

Soldering to the leads of the diode detector D1 and the relay coil lugs should be performed quickly with a hot iron. These parts can be damaged by overheating. Preferably, grasp the lead with a pair of pliers to act as a heat sink.

The two leads from the " \(A\) " contacts of the relay terminate in a male plug, with a foot or so of electric line cord between. A shielded cable runs from the potentiometer P1 and the blocking capacitor C7 to a plug suitable for connection to the monitor jack or external speaker on the tape recorder sound output. Get the right plug to fit the jack on your machine. If your recorder does not have such an output, connect shielded wire from the secondary of the output transformer to coaxial jack and hook a mating plug on the shielded wire from the sound input to the relay. Figure 7 shows two such circuits.
To match the attachment plug from the relay "A" contacts, unsolder one side of the power line running to the tape transport motor and
hook a length of power line cord to the disconnected terminal and the terminal remaining connected to act as a switch leg. Outside the tape recorder, terminate this line in a female plug. By these two plugs and their mates, the tape recorder and the automatic relay can be separated from each other. A male plug with a shorting wire connected between its two contacts can close the tape recorder's motor circuit by insertion into the switch leg female receptacle. This plug restores the tape recorder to normal condition for use without the automatic relay described. For convenience, a 3 -way cube tap is a handy accessory. Very often there is a scarcity of outlets and inability to find one for the relay power line and the tape recorder power line is a problem.
A switch has not been provided to turn the relay unit on or off. Pull out the power plug. If a switch is desired, the user can install one on the front panel or on the rear of potentiometer P1. Wire into the circuit between either transformer lead and the matching conductor of the ac power cord.

Operation and Testing: After careful wiring and inspection, the device should be ready

to operate. Plug in the power cord. Attach the relay switch leg to the lead from the opened motor circuit. Insert the signal cable into the output monitor jack. Allow about 30 seconds for warm up. Plug a microphone into tape recorder if not already inserted. Turn on tape recorder and allow it to warm up-do this simultaneously with the relay. Switch to record and put the tape transport control on forward as for normal recording. Advance the recording level control (volume control) on the recorder while speaking into the microphone as for normal recording. Adjust for proper output with level indicator.

As the level control is advanced the automatic relay unit will start the motor if the

potentiometer P1 is fully clockwise. The motor will run continuously as long as loud enough sound is fed continuously into the microphone as in normal operation. This will happen under the conditions mentioned regardless of the setting of delay control, P2.
With intermittent sound, delay control P2 makes a big difference. With the sound over the level required by the tape recorder for proper recording and the gain of P1 set high enough, the running time after the relay

Fig. 3: Parts location on top of the chassis of the completed unit. All controls mount on front panel.
starts the motor is controlled by the P2 setting. At an extreme clockwise setting for P2 the tape will run continuously due to the long delay time before the drop out if the sound is fairly continuous. Otherwise, the automatic relay awaits another signal to trigger it to the on position, and the tape runs for another delay period continuously.

At the extreme counterclockwise position of \(P 2\), the delay time is very short and choppy motion will result. Sound may tend to be choppy with shorter delays though. For this reason, the P2 position is chosen for five seconds or longer delays in practice.

In operation, P1 is set so that the average sound made near the microphone or other pickup unit will easily trigger the automatic tape transport relay. It is usually set high enough to be triggered readily but P1 should be set low enough so that low extraneous sounds do not set off the device. Care in placing the pickup or microphone will help to discriminate between desired and unwanted sound being recorded.

Electromagnet Actuation: The "A" contacts can close the circuit to an electromagnet solenoid instead of the motor of the recorder. Such a solenoid may be mounted on an appropriate bracket to pull in the tape transport lever. A spring is arranged to return the lever whenever the relay is deenergized, and consequently the solenoid. The usual power supply for the solenoid is 110 volts ac which
will require a plug to fit into another outlet or a cube tap. The use of a solenoid will help to avoid the wearing of a flat on the recorders rubber drive wheels.
Relay Adjustment: The relay in the automatic tape transport ought not to require adjustment. It should be left alone until other remedies and troubleshooting definitely indicate the need for such attention. Then give ministration to this relatively delicate component sparingly and gently.
Correct armature tension is important. Correct tension may be ascertained by gently moving the armature by hand (power off to the relay unit as a whole). The armature spring should just move. The spring may have moved in shipment and in mounting-it may be coiled or uncoiled slightly. Try twist-ing-gently-to see if the movement of the armature produces movement of the spring. Otherwise, loosen the sealing wax and adjust the spring tension by the adjusting screw, and-important!-reseal. (Use a dab of Duco or rubber cement to reseal if sealing wax is not at hand.)

Do not tamper with the screw adjustment on top of the armature.

Do not bend the contacts to the " \(A\) " and " \(B\) " fixed arms unless they are definitely out of shape due to abuse such as might occur in shipment. If such work is required, see that both up and down contacts touch the movable contacts simultaneously as the armature is moved by hand. Some light should be visible between the armature and the coil pole-piece as the relay is viewed from the side. (The armature is open, and its contacts are resting against the normally open fixed contacts during this inspection.)

Two cases require an adjustment of the armature spring tension.
1. If the armature pulls in and remains pulled in without any signal input, too little tension is present as the cause. Try loosening the spring by turning it gently in the support lug-it may have shifted slightly in shipment. Otherwise unseal and adjust as previously mentioned, increasing the tension by small amounts. Be careful not to shift the position of the armature in its pivots, or the spring's relative position.
2. If the armature buzzes but will not latch closed with normal sound (be sure there is enough delay on P2 and that P1 is turned a sufficient amount clockwise.) The tension in the spring is too great. Reverse the procedure under (1) preceding to lessen the tension.

Testing P2 Action: The relay armature can be pushed gently closed by hand. The relay will remain latched if the delay setting of P2 is enough and in proportion to that setting. This also checks the connection of C3 into the circuit.

Fig. 4: Underneath the chassis inside the finished sound relay. Dress diode D1 to avoid short circuits.

Overall Quick Check: Remove the sound input plug from the monitor jack. Touch its inner conductor. The relay should start the motor. (P1 and P2 must be fully clockwise.)

Conclusion: The unit may be triggered from another sound source by connecting the sound input of the automatic relay to the output of an audio amplifier whose input is the sound to be used as a trigger. This is done just as with a tape recorder output.

Do not leave the tape between the rollers of the drive assembly (capstan and roller) any more than necessary or flats will be worn. Of course, the machine must be left in this condition for operation with the relay. The tape recorder is set up exactly as for recording with amplifier on, and tape transport on forward. The relay merely starts its motor to move the tape.

Fig. 5: Front view of the completed unit. Only two wires are used, one for signal and one for power. P1 controls the sensitivity of the unit, P2 the time delay.

These are pictures taken in a shark channel test at the Miami Seaquarium. A fish is hung out over the channel, lowered, and the sharks callect. The second shot shows a shark circling in for the kill. In the final picture, just as Hicks pushes the button, one shark leaves-fast. Even though he was ready to chomp, he left without taking a single bite. Sherks, the Hicks have found, when hit with the repeller's electronic waves, open their jaws and release what they're about to devour.

\section*{Electronic \\ SHARK SHOCKER}

SHOCKED sharks skitter away or die if they're attacked by the low frequency impulses of a transistorized shark repeller, now being tested for the U. S. Armed Forces. Working on the principle of the electric eel, the device upsets the shark's hunting mechanism. When it's turned on, the sharks make an immediate left turn (no one knows why the turn must be to the left) and take off. If the shark doesn't flee, prolonged exposure to the signal kills him. Inventors John and Robert Hicks, 6240 Coral Lake Drive, Miami, have already annihilated seven tiger sharks this way.
The artificial electric eel is a waterproof three-pound box which straps to a raft, space capsule, scuba diver's air tank or to a downed
airman's leg. Its flexible antenna can be built into the wearer's clothing or, as in the scuba unit, the antenna folds flush with the diver's tank. Operating on special batteries, the transmitter will work for eight hours in continuous operation. Used judiciously, however, the power can last a day or more. There is only one control-an on-off switch; a deadman mechanism automatically activates the repeller on contact with water, in case the wearer has lost consciousness. In open water tests, the repeller is effective at ranges up to 50 feet in diameter.

Seven years and \(\$ 145,000\) in the developing, the repeller has several models, one weighing eight ounces. The scuba outfit is the only one currently in production.-D. J. Cipnic.

Sitting scfely in his little raft at the Seaquarium, John Higks watehes smugly while 50 sharks try to get at hm . Whenever one approaches, Hicks pushe: the repeller button, and the shark flees in a foamy fury. Without the repeller starks would have destroyed raft and Hicks in a few minutes.

The product on model in position on a scuba tank. The on-off switch is at the battom. Future models will have even more compact antennae. Units also carry lights which indicate if batteries have full charge.

This life ring has a repeller attached to it for rescues in shark-infested waters.

\section*{Sterea Cansale}

\author{
New picture-thin speaker enclosures cut cost, simplify construction
}

IMITED space in the living room of an apartment or ranch house need no longer keep you from enjoying fine stereo sound. This hi-fi cabinet takes less than 10 cu. ft . of room, yet it includes two speaker systems, an amplifier, FM tuner and full size turntable. And there is enough storage space for 100 record albums.

A circular saw is just about the only power tool needed to build this project. You could get along without that if you bought the wood pre-cut from a dealer that stocks cabinet wood. (Editor's Note: Author Srodon built the unit shown in the photos though he lives in an apartment and has no workshop space. He had the panels cut and checked for fit at a cabinet shop. Assembly was finished in the living room only with glue, clamps, hammer, a hand drill, and hand saw.)

The console is a bargain when you compare cost with most designs. You can build the complete unit including both speakers for less than \(\$ 50\), a fraction of the cost of manufactured cabinets. One important money saving

feature is the use of two unusual new hi-fi speaker systems which swing upward on hinges as in Fig. 1A.

The speakers (\(\$ 15.85\) each, see Materials List) are supplied assembled in fine cabinet wood housings. Manufectured by Utah Electronics Corp., these speaker enclosures are intended for wall mounting, but they operate perfectly mounted in this cabinet design. The speaker enclosures (Fig. 3) measure 12 in . high, 18 in . long, and only 3 in . deep. Yet they produce a full tonal response from 70-80 cycles up to \(16,500 \mathrm{cps}\), at the rated 8 watt output.

Each speaker enclosure houses a \(6 \times 9\)-in. woofer mid-range speaker, a \(3 \times 5-\mathrm{in}\). cone tweeter with \(2,000 \mathrm{cps}\) electrical crossover, as well as a tuned bass reflex port (Fig. 3). Using these speakers, or their equal, means that the toughest part of a home hi-fi project, the speaker mounting, can take advantage of factory engineering and assembly.
Begin Construction by cutting the walnutveneer core stock to size. You must have a
fine-toothed table saw blade, 10 to 15 teeth per inch, to avoid splitting the veneer. Protect the finished surfaces with cardboard or paper while the project is in process.

Butt joints throughout simplify construction. Though this may be your first furniture project, you should be able to get perfect corners with no difficulty. Glue the side pieces to the cabinet front, with Elmer's (or equal) woodworkers glue. Use \(1 / 2-\mathrm{in}\). quarter-round glue blocks on each inside corner. Also glue and block the inside divider pieces in the same way. Then clamp the back corners of the unit and cut \(1 \times 2\)-in. framing lumber to fit the back. These \(1 \times 2-\mathrm{in}\). pieces give the cabinet additional strength and also help to keep it lined up square while the glue sets.

Install the divider section tops next. Use \(1 \times 2-\mathrm{in}\). wood strips inside the divider sections (Fig. 2) glued and screwed in place. Fit additional vertical \(1 \times 2\)-in. strips vertically to form a fastening surface for the \(1 / 8-\mathrm{in}\). tempered hardboard- used to line the rear of the record compartment.

3 Dotted line indicates structure of standard speaker. New thin-speaker design uses magnet inverted within cone. Sound quality is equivalent. Enclosures can be ordered in mahogany, blonde, or walnut finish. Impedance is 8 ohms.

\section*{Now Plan the Equip-} ment compartment. The unit shown in the photos was equipped with new models of Knight-Kit transistor components. A 40 -watt amplifier, FM multiplex tuner, and a full size turntable fit neatly into the space. The tuner and amplifier backs rest on the cabinet bottom. Draw outlines of your equipment full size on a sheet of tracing paper, and transfer to the \(3 / 4\) in. walnut wood core equipment mounting board.

Use a keyhole or sabre saw to cut the equipment wells. Fas-
\begin{tabular}{|c|c|c|}
\hline & MATERIALS LIST-COMPACT STEREO CONSOLE & \\
\hline Amt. Req. & Slize and Description & Use \\
\hline 1 pc & \(3 / 4 \times 16 \times 60^{\prime \prime}\) walnut veneer wood core & front \\
\hline 2 pcs & \(3 / 4 \times 151 / 4 \times 151 / 4\) " walnut veneer wood core & side pieces \\
\hline 1 pc & \(3 / 4 \times 151 / 4 \times 24^{\prime \prime}\) walnut veneer wood core & drop lid \\
\hline 2 pcs & \(3 / 4 \times 4 \times 18^{\prime \prime}\) walnut veneer wood core & top ends \\
\hline 2 pes & \(3 / 4 \times 151 / 4 \times 151 / 2^{\prime \prime}\) walnut veneer wood core & inside dividers \\
\hline 2 pes & \(1 \times 2^{\prime \prime} \times 8^{\prime \prime}\) lumber & framing members \\
\hline 1 pc & \(1 / 2^{\prime \prime} \times 10^{\prime}\) quarter round & corner strengtheners \\
\hline 1 pc & \(1 / 8 \times 16 \times 581 / 2^{\prime \prime}\) peqboard & back \\
\hline 1 & \(1 / 2 \times 16 \times 60^{\prime \prime}\) plywood & bottom \\
\hline 1 & \(18 \times 143 / 4 \times 221 / 2^{\prime \prime}\) tempered Hardboard & center linep \\
\hline 2 & \(1 / 8 \times 143 / 4^{\prime \prime} \times 17 / 4^{\prime \prime}\) tempered Hardboard & record section liner \\
\hline 1 & \(3 / 4 \times 15^{\prime \prime} \times 24^{\prime \prime}\) walnut veneer wood core & equipment mounting board \\
\hline 1 & \(24 \times 36^{\prime \prime}\) plastic laminate & speaker covering \\
\hline 2 ea. & "Utah" Picture Thin two-way speaker systems. Available Allied Radio, 100 N. Western, Chicago 80, III. Cat. No. \(57 \mathrm{D} \times 503, \$ 15.85\). Size \(12 \times 18 \times 3^{\prime \prime}\). & stereo speakers \\
\hline 1 & \(1 / 2 \times 1 / 2 \times 24^{\prime \prime}\) brass-plated continuous hinge with screws & drop lid hinue \\
\hline 2 & \(1 / 2 \times 1 / 2 \times 18^{\prime \prime}\) brass-plated continuous hinges with strews & speaker hinjes \\
\hline 4 & \(1 \times 1 \times 4^{\prime \prime}\) steel or aluminum legs & cabinet legs \\
\hline 2 & \(1 \times 6^{\prime \prime}\) drop lid supports & drop lid \\
\hline 2 & \(1 / 4 \times 12 \times 18^{\prime \prime \prime}\) tempered Hardboard & speaker backs \\
\hline 48 & \# \(7 \times 3 / 4{ }^{\prime \prime}\) wood screws & inside liner and back fasteners \\
\hline 48 & \# \(7 \times 2^{\prime \prime}\) wood strews & cabinet fasteners \\
\hline 1 & \(3 / 4^{\prime \prime} \times 8^{\prime}\) roll walnut veneer tape & finishing edges \\
\hline 1 & Knight model KN•1000 turntable and pickup arm & \\
\hline 1 & Knight model KN-400-B transistor 40 watt amplifier & \\
\hline 1 & Knight model KN-250-M transistor FM-Multiplex Tuner (Knight equipment available at Allied Radio, 100 N . Western & \\
\hline
\end{tabular}
ten 1 x 2 -in. strips to the inside of the equipment section to form supports for the equipment mounting board. Be sure there is enough clearance for the maximum height of the components, as well as for proper seating of the drop lid top. Cut and trim the \(1 / 2\)-in. plywood bottom panel, to fit, and fasten to the bottom framing members with \(11 / 2-\mathrm{in}\). finishing nails and glue.

The Speaker Cabinets will require back covers made of \(1 / 4-\mathrm{in}\). tempered hardboard cut to fit the \(12 \times 18-\mathrm{in}\). dimensions. Before you glue the backs in place, wire the speaker leads and extend through the cabinet. The speaker backs may be painted, or you can cover with a plastic laminate as in Fig. 3. For good edges, plastic laminate must be cut to size with a sharp razor knife and the edges finished with a fine file. To fasten the laminate to the cabinets, use contact bond adhesive, such as Weldwood.

Fasten the \(1 / 2 \times 1 / 2 \times 18\)-in. brass plated continuous hinges to the backs of the speaker cabinets and position each unit carefully on the cabinet. A proper fit of the speakers depends on the accuracy of the hinge position. After the speakers are hinged in position, trim the center drop lid to fit, attach the \(24-\mathrm{in}\). hinge to it, and fit to the cabinet.

Mount your hi-fi equipment on the \(3 / 4-\mathrm{in}\). board, position, and fasten the completed assembly. Wire in the ground, antenna, and speaker connections. Then fasten the \(1 / 8-\mathrm{in}\). tempered hardboard cabinet liners into place with \(3 / 4-\mathrm{in}\). x \#7 fh wood screws. Fasten the \(1 / 8-\mathrm{in}\). pegboard back in the same way.
You can treat the exposed edges of the walnut veneer core wood either by finishing with matching \(3 / 4-\mathrm{in}\). wood veneer tape, or by sanding the edges and painting with black lacquer.

Final finishing is the last step, and the most important for a professional looking job.

The hinges must be set in just the right spot so the speakers will fit. Trim and fit center drop lid last.

Sand all exposed wood areas with a \(4 / 0\) finishing paper until smooth. Fill nicks or scratches with appropriately colored plastic wood.

A natural linseed oil finish was applied to our walnut cabinet (Fig. 1). There are many linseed oil finishes on the market that will do the job. But be sure to follow the manufacturer's recommendations exactly. If a tougher surface is wanted, use several coats of clear lacquer instead, sanding with No. 00 sandpaper and steel wool between coats.

Customize the cabinet by adding appropriate moldings and trim as in Fig. 7.

\title{
Transistorized Amplifier
}

\author{
By Harold P. STRAND
}

FIG. I: Conceal the microphone under a lampshade and run the wire behind the lomp. Connect the wire to your amplifier and you can "listen in."

THIS one-evening project is easy to assemble and can provide many hours of fun and relaxation. It can, as you will see, serve a very practical purpose in the home and shop as well.
The Amplifier Is Assembled on a perforated phenolic board. Flea clips are used to facilitate connections. Follow the pictorial diagrams (Figs. 4 and 5) for approximate parts locations and mount the major components, such as transistor sockets, transformer and solder lug. Proceed with the wiring, following the schematic diagram (Fig. 3) and the pictorial diagrams (Figs. 4 and 5). Be sure to allow ample slack for the wires to the components that will mount on the chassis box.

Figure 6 shows the hole-cutting pattern to be followed for the box itself. All components mount on one side, for ease of access.

Use thin fiber washers or shoulder washers to insulate the magnetic phone jack from the box. Cement the washers to the box with ordinary household cement.

Mount the two brackets to the circuit board and carefully install the board into the box, first guiding the extended lead switches and jacks to their proper locations. When they have been made fast, attach the board to the sides of the box by means of the mounting brackets. The battery holder is then fastened to the bottom inside of the box, and the battery is installed.

Using the Unit. The amplifier provides for either high or low impedance inputs. Plug a phonograph into the appropriate input jack, and connect a magnetic earphone to the output. Start the phonograph and turn the switch of the amplifier on, with the volume turned down. Slowly rotate the volume control, and you will hear the music, though nobody else will! You can check the amplifier circuits of various types of radios, simply by connecting the input of this little helper to the center tap of the radio volume control! (If you hear the radio on the earphone, but not through the radio's speaker, you have amplifier troubles in the radio!) Other uses will surely suggest themselves to you, but here are a few applications that you can play with. Connect a musical instrument pickup to the low-level input, and you can practice your electric guitar to your heart's content without disturbing any of the family or neighbors.
In the electronic lab, the unit finds additional uses. If you are checking any audio signal source, such as a tape player, FM or AM tuner, or phonograph, all you need is the suspect instrument and this amplifier. No need to lug the entire hi-fi system into the lab!

You'll have fun building this project, for it is a simple one. It will reward you with many more hours of fun and practical use at home.

FIG. 2: With cover removed, you can see the placement of component parts. While placement is not critical, avoid short circuits.

6 HOLE LAYOUT IN TOP OF BOX

Materials List-Transistorized Amplifier Amt. Req. Size and Description
\(14 \times 4 \times 2^{\prime \prime}\) metal utility cabinet 2N109 transistors R.C.A.
Argonne transistor transformer, \#AR-100
transistor sockets \#MS-275
\(20 \mathrm{mfd}, 15\) v CF- 123 miniature electrolytic capacitor
10 mfd, 15 v CF- 122 miniature electrolytic capacitor
\(.01 \mathrm{mfd}, 200\) volt paper capacitor
.1 mfd, 200 volt disc ceramic capacitor
330 ohm. \(1 / 2 \cdot w\) carbon resistor
15.000 ohm \(1 / 2 \cdot w\) carbon resistor
10.000 ohm \(1 / 2 \cdot w\) carbon resistor
slide switch, single gole. single throw
miniature jacks and glugs MS-370
25.000 ohm volume control, VC-24
miniature knob MS-185
9:v battery, Eveready \#226
battery holder to suit
perforated phenolic board MS-305
pko flea clips MS-263
lapel microphone PA-9
earphone MS-260
* All parts available from Lafayette Radio Electronics Co., 111 Jericho Turnpike, Syossett, N. Y.

\section*{Junior Op=Orater}

> Whoever said "Many Hands Make Light Work" did not mean to include youngsters in your electronics lab...

\author{
By WILLIAM J. RYAN
}

ASK any ham what a junior op is, and he'll tell you, depending on his own family relations that it's either a small child, or a pesky younger brother. Take a look around your ham shack, or workshop. Actually, the very same dials, meters, lights, switches and buzzers that so fascinate you, also fascinate your own Junior Op. It seems that none of the "Hands off" signs, or the verbal warnings will help. Even an occasional warming of the bottom is sometimes weighed by the Junior Op as a modest price to pay for play.

This device is a compromise. You give him this to play with, and he leaves your toys alone! It has many distinct advantages. It is inexpensive, it is easy to build, and in addition to being decidedly interesting to any tyro technician, it is educational.

The unit contains a telephone dial to spin, a knob to twirl, a public (?) address system, switches to press, lights to flash, and a buzzer to buzz. Operating from an ordinary lantern battery, it is also quite safe.

House the unit in an old record player box, or construct one from plywood. The dimensions are not critical. Cut a plywood panel to fit the top of the box, and mount the components on this. Drill the necessary holes for the speaker, and mount the speaker beneath these holes. The public address system is simply a carbon microphone modulated PM speaker. Rewire the switch circuit to open the circuit when the switch is not depressed. This will save a good deal of battery replacement.

Mount an octal tube socket on the face of the unit, and plug in an old metal tube. Metal tubes can withstand far more abuse from little hands than glass. Be sure too, that the

There's no complexity to the wiring. Make sure that all components are tightly attached to the panel for safety!

\section*{Chairside Hearing Aid}

\begin{abstract}
Many people who are hard of hearing spend lots of time indoors in fixed positions . . . At desks, work tables, or just sitting: \(A C\) operation eliminates the problem of battery drain and replacement
\end{abstract}

\author{
By Harold P. STRAND
}

FIG. 1: Plugged into an ac receptacle, this hearing aid drains no batteries while being used. Ideal for the hard-of hearing while in fixed positions in chairs, at desks, or confined to bed.

THOSE who are hard of hearing and wear a hearing aid will find this of great value. It is to be used when in a fixed location such as the living room, joining in conversation or listening to the TV or radio. It can also be used effectively while listening to the programs in bed. It saves batteries used in portable hearing aids which run down quickly.

We use a built-in battery much larger than a hearing aid type which should last for two

FIG. 2: The complete equipment. The small power pack can be placed on the floor near an outlet. A built-in battery pack permits the user to disconnect from the supply. While not miniature, it is portable on batteries.

or three months. It can be plugged into the 115 -volt line and use no battery power at all. This is done by a miniature de supply which converts the 115 -volt ac power to a low dc current for operating the circuit. Since the circuit requires only about 2 ma , either system needs very little current. The power supply is well filtered so there is no hum or other objectionable noise. Two transistors are used in a very stable and effective circuit with a crystal microphone. A small ear phone, simi-

FIG. 3: A recessed TV plug connects the unit to the power supply. The slide switch permits the user to select modes. You can choose ac line operation by sliding the switch right, or battery (built-in) by sliding switch left.
lar to a hearing aid type, transmits the sound to the ear. If the use is not too extensive or continuous, battery power will be found the most convenient, as you can pick up the unit and carry it around the house with you. When you want to listen to long TV programs or you plan to stay in one place (as in the case of
an invalid) use the 115 -volt power and there will be no battery drain at all. A small stepdown transformer together with a 2 -ampere fuse is placed in a \(21 / 4 \times 4 \times 21 / 4-\mathrm{in}\). metal box with a line cord. The box is placed on the floor near the outlet and since it is small, can be left there ready for use. To employ the

PLUG AND SWTTCH MOUNTING DETAILS

INSTALL IN BOX IN PLACE OF AMPHENOL RECEPTACLE
PIECE OF BRASS

UBBEL RECEPTACLE AND PLUG CAN BE SUBSTITUTED FOR ALTERED UNITS ABOVE

HOW PLUS ON CORO CONNECTING TRANSFORMER TO UNIT IS ALTERED SO IT CANNOT BE USED IN REGULAR WALL OUTLET

TO RECEPTACLE ON BACK OF UNIT
line power, plug in the separable cord which connects the transformer to the unit, push the slide switch to LINE and push the top switch to ON and it is ready for use. Power can be transferred to either line or battery at any time by sliding the control switch to the position desired.

The transformer is mounted in a box away from the unit as it was found that when contained in the main box the 60 -cycle hum would be picked up by the sensitive microphone.

A volume control and a jack for plugging in the ear piece are provided on the top of the box. If for no other reason, this piece of equipment is handy in an emergency when the regular hearing aid is out for repairs or you run out of batteries. We do not mean to imply that our device will replace your professionally fitted hearing aid. That is indispensable for normal use, but ours can be of great aid in saving your regular batteries when used under the conditions stated.

Figure 1 shows the unit in use. Tests made with several persons having a hearing deficiency indicated that it has a quality of tone acceptable to most people. One test was made on a woman who had zero hearing in one ear and only \(20 \%\) in the other. She reported that it allowed her to carry on a normal conversation with other persons and she could listen to TV programs with the set at an average volume, locating her chair about 6 ft . from the set.

The complete equipment is illustrated in

Fig. 2. The main unit and transformer enclosure are shown. The cord connnecting the two units is plugged in and the small ear piece is shown on the table. You can obtain a plastic piece which fits in the ear more securely than the soft rubber supplied, and will fit on the receiver in place of the rubber piece. The microphone is an inexpensive lapel type with a chrome front grille which can be seen in the opening of the cabinet. It is mounted in rubber to reduce unwanted noise.

When using battery power only, the small metal box and ear phone are all that will be required. Figure 3 shows how the connecting cord is plugged into the TV type line receptacle. An SPDT slide switch is located at the right and switches from line to battery power. The top controls consist of a phone jack at the left, the volume control in the center and the on-off switch at the right. All components are attached to the main body of the cabinet so that the back cover with its sides can be easily removed without any connecting wires.

Construction: The aluminum box is drilled and the required rectangular holes cut out to accommodate the slide switches and the line receptacle at the back (Fig. 4). Mark these holes carefully, then use a drill to make a series of holes within the marked lines. Small diagonal pliers can then be used to break out the material between the holes. Use a small flat file to dress them to shape and size. It would be well to check the locations of the rectangular holes given in the drawings with the spacing of the slide switch and line re-

HOLE LAYOUT FRONT OF CABINET

CHASSIS BRACKETS 2.REQ. 1/2-HARD ALUMINUM

PERFORATED BAKELITE CHASSIS FLEA CLIPS PRESSED IN HOLES AS REQUIRED
ceptacle which are mounted on brackets, to make sure they will match.
The transistor chassis consists of a piece of perforated Bakelite board which is supported on two aluminum angle brackets to the front of the box. The same screws and nuts are used for the microphone clamp. An input transformer matches the high impedance of the crystal microphone to the low impedance of the transistor circuit. Miniature sockets are used for the transistors which are secured in rectangular holes cut in the Bakelite board. Flea clips provide suitable terminals for wires and leads which join in soldered connections. Use subminiature \#28 high temperature wire (Alpha \#407-A) for all the chassis wiring. The 0.1 capacitor, connecting one side of the transformer secondary to the arm of the volume control, is located at the top of the chassis. All the other capacitors and resistors are located at the under side, making connections with solder to the projecting ends of the clips and socket terminals. Leads going to the top switch, the rectifier section and battery terminals are \#24 plastic covered stranded wire.

The unusual circuit (Fig. 12) provides surprising gain without distortion and uses two RCA 2N109 transistors. Make all connections correctly and avoid unnecessary solder which

might run down between some of the closely spaced terminals to cause a short. Watch the polarity of the electrolytic capacitors carefully to make sure they are correctly installed with respect to their plus and minus ends. Also, take care to see that the transistors are properly connected. The socket pin that is widest spaced from the others is the collector. The one in the center is the base and the other is the emitter. Be sure to get the polarity of the voltage from the battery and that from the power supply correct. Reversed polarity will not allow the circuit to operate at all and the transistors may be ruined. To mount the mike, cement a disk of rubber inner tube, with a \(13 / 10\) in. inside diameter with Pliobond cement at the back of the cabinet opening. Cement a piece of soft rubber \(1 / 8 \mathrm{in}\). thick \(3 / 4 \mathrm{in}\). wide to the back of the supporting strap. Remove the swivel found at the back of the microphone. Apply cement to the facing side of the rubber ring. The chassis, which was prewired, is placed against the cabinet and then the strap is mounted. This holds the microphone in and the screws and nuts used to hold the assembly in place. The dimensions of the supporting strap may have to be adjusted to get a secure fastening of both the chassis brackets and the microphone. The mike should be centered in the opening. After the

hole layout in bottom of box

TERMINAL BOARD FOR FILTER CAPACITORS
chassis is in place, make the connections to the jack, volume control and the switch at the top of the cabinet.
Leads are carried down to the power supply and the battery for connections at the bottom of the box. Use a piece of the Bakelite perforated board with flea clips for mounting the filter capacitors. Drill a hole in this piece to secure one corner with a nut to one of the screws used for the rubber feet. Use two extra nuts on the screw to give about \(3 / 16\) in. spacing from the metal box bottom. Support the other end of the piece away from the box the same distance by using screws and nuts as detailed in the drawings. This prevents the lower ends of the flea clips from shorting to the box.
Use a half-wave rectifier of about 65 ma as the first stage in rectification from ac to dc. The filtering consists of an 820 ohm resistor with a 20 and 50 mfd . capacitor connected as
shown in the wiring diagram. Mount the rectifier to the cabinet bottom with a small bracket, screw and nut. Support the battery in a spring clip formed from a piece of thin, hard brass and attach it to the cabinet. Provide supports for the recessed line receptacle and the SPDT slide switch with three bracket pieces. Secure the cabinet bottom to these with screws and nuts. The ears of these two parts have their holes countersunk so that flat head screws can be used, which clamp them with nuts to the brackets.

Figure 5 shows a view from the power supply end. The wires which run alongside of the capacitor are neatly bundled together and held with two narrow bands of adhesive tape. The terminals of the back slide switch and the recessed receptacle are easily accessible for connections. The polarity of the rectifier is important. The plus end is marked and this should connect to the plus end of the 20 mfd .

WIRING INSIDE BOX

FIG. 5: Inside the unit from the rear. Note the mounting of the dry rectifier and the capacitors in the filter system.

FIG: 7. The plug on the cord from the hearing aid to the supply is widened by soldering a piece of brass to one leg. This prevents you from connecting to a live outlet.
capacitor and to one end of the 820 ohm resistor, as shown in the diagram.

Figure 6 is a view of the open transformer box to show the placement of the parts. If there is a wall receptacle near the chair where the unit will be mostly used, you can use a short line cord and leave the box plugged in, placed on the floor near the receptacle. Otherwise, use a standard length of 6 ft . to reach the wall receptacle, as shown. Drill holes in the box for ventilation though in normal use there should be little temperature rise at the transformer.
In Fig. 7, the altered plug on the connecting cord is shown which will prevent its use in a standard wall receptacle. Solder a small strip of brass to the side of one of the prongs. Lengthen the wider of the two slots in the Amphenol receptacle with a small, thin file so the extra width prong will fit. Installing the receptacle with the wider slot at the top, you can file the slot at the right side with only about \(1 / 1 / 1 \mathrm{in}\). of Bakelite to encounter.

FIG. 6: Looking into the power supply box we see the transformer, line fuse and the modified receptacle.

FIG. 8: With the case opened and the chassis removed, we see parts on the perforated Bakelite board. Note that all parts mount on case to facilitate opening.

11 TOP SIDE OF CHASSIS

Another method is to use one of the special receptacles and matching plugs, such as a Hubbell 2 -wire, miniature twist-lock type \#7468 receptacle with mounting flange and \#7462 plug cap to fit. To use this method it is necessary to cut off the original molded-on plug which comes with the line cord and attach the new one. Mount the receptacle in the box in the approximate location shown for the Amphenol receptacle, making a hole to suit the receptacle body and drilling holes for the mounting screws to suit.

Construction of the equipment described will present no difficulties to the experienced
electronic technician. The electrical experimenter who is used to working with small parts and electronic wiring will be able to complete the job satisfactorily if care is taken to follow the plans carefully. The total cost for parts and materials for building this unit operating from a battery only will be around \(\$ 15\). To operate it on either battery or line power, the additional parts will cost about \(\$ 5\). These parts include the filament transformer, receptacle, fuse and fuse holder and metal box with two line cords, as well as the rectifier and filtering components which will not be required for battery operation only.

\section*{MATERIALS LIST-CHAIRSIDE HEARING AID}
\begin{tabular}{|c|c|}
\hline Amt. Req. & . Size and Description \\
\hline 1 & crystal microphone Argonne AR-53 \\
\hline 1 & subminiature Jack, MS-282 \\
\hline 1 & subminiature plug, MS-281 (optional, plup may come on ear phone) \\
\hline 1 & 10k miniature potentiometer less switch VC. 34 \\
\hline 1 & \(1 / 8{ }^{\prime \prime}\) shaft minlature Bakelite knoh MS-185 \\
\hline 1 & TV type recessed line socket TS. 106 \\
\hline 1 & TV type line cord TS-105 \\
\hline 1 & input transformer AR-100 \\
\hline 2 & transistor sockets MS-275 \\
\hline 2 & 2N109 transistors, RCA \\
\hline 1 pkg. & flea clips MS-263 \\
\hline 1 & perforated Bakelite board MS-305 \\
\hline 1 & 30 mfd 15-v miniature electrolytic capacitor CF-124 \\
\hline 1 & \(20 \mathrm{mfd} 15-\mathrm{v}\) miniature electrolytit capacitor CF-123 \\
\hline 1 & 50 mfd 15-v miniature electrolytic capacitor CF- 125 \\
\hline 1 & \(10 \mathrm{mfd} 15 \cdot \mathrm{v}\) miniature electrolytic capacitor CF-122 \\
\hline 1 & 0.1 mfd 200-v paper capacitor, Sprague 2EP.P10 or equiv. \\
\hline 1 & \(330 \mathrm{ohm} \mathrm{1/2-w} \mathrm{resistor}\) \\
\hline 1 & 15k ohm \(1 / 2\)-w resistor \\
\hline 1 & 10k ohm 1/2.w resistor \\
\hline 1 & 820 ohm 1/2.w resistor \\
\hline 1 & 65 ma \(1 / 2\) wave rectifier RE \(\mathbf{5 0}\) or equiv. with plates about \(11 / 16 \times 11 / 16^{\prime \prime}\) \\
\hline 1 & 9.v transistor battery Burgess P6 \\
\hline
\end{tabular}

\footnotetext{
male battery clip-on connector
female battery clip-on connector
dynamic ear phone MS-260
6.3-v at . 6 amp sec . filament transformer Thordarson 21 F21
\(21 / 4 \times 4 \times 21 / 4^{\prime \prime}\) aluminum mini-box, Bud or Premier MC- 361
61-F1 receptacle with mounting plate, Amphenol
line cord with attached plug
\(3 / 8^{\prime \prime}\) hole rubber grommet
3AG fuse, surface fuse mount, lug terminals, Littlefuse 357001
2A 3AG glass fuse
\(3 /{ }^{6 \prime \prime}\) rubber feet
The above materials can be supulied by Lafayette Radio, 111 Jericho Turnpike, Syosset, N. Y.
}

\section*{Also required}
aluminum sloping front utllity box, gray hammertone finish Bud ACl610A
SPST slide switch \(11 / \mathrm{s}^{\prime \prime}\) mounting centers
SPDT slide switch \(11 / 8^{\prime \prime}\) mounting centers

Misc. aluminum for brackets, rubber from an old inner tube, 2 thin Bakelite or fiber washers for phone jack, \#28 subminiature Alpha hook-up wire, \#24 plastic covered stranded hook-up wire, screws, and nuts.

Fig. 1: The completed electronic photo timer can be operated with a contact printer in the photography lab.

\section*{By CHARLES GREEN W3IKH}

ARE you one of the many photo enthusiasts who develop and print their own pittures by rule of thumb? Here is an easily constructed photo timer that will enable you to accurately control exposures on enlargers and contact printers. Once you have found the right setting for a particular print, the electronic photo timer will enable you to repeat the timed intervals as often as you wish.
The electronic photo timer is built on a perforated chassis board mounted in a metal cabinet. All controls are on the front panel. The timed power outlet for a contact printer or enlarger is mounted on the side panel.
The timer is calibrated from 1 second to 15 seconds in 1 second graduations and from 15 seconds to 40 seconds in 5 second graduations. The desired time interval is easily adjusted by rotating the control mounted in the center of the front panel. The toggle switch on the top center of the front panel, is used to start the timing action. The slide switch on the lower center of the front panel is the ac
power off-on control.
How It Works: The schematic diagram (Fig. 2) shows that the timing switch (SW2) is normally in the RESET position. This allows C1 to charge negatively by means of the rectifying action between the grid and cathode of VIA. The capacitor's negative charge has no effect on the tube's current flow, as it is connected (through R1) to the plate circuit.

When the timing switch is thrown to the PRINT position, it connects R1 to the cathode of VIA. This places the capacitor's (C) negative charge between grid and cathode of VIA. This cuts off the plate current flowing through R3.

The grid and cathode of VIB are connected across R3. The lack of plate current flow of VIA through R3 therefore causes the plate current of VIB to operate at maximum current, as there is now no bias voltage for VIB. (The bias voltage for VIB is furnished by the plate current flow of VIA through R3). This causes the relay K1 to close and ac power is then connected to J1 (The timed power

outlet for the contact printer or enlarger.)
After a definite time period (depending on the setting of R1) C1 is discharged through R2, removing the negative voltage on the grid of VIA and causing it's plate current to flow again through R3. The bias voltage across R3 now causes the plate current of VIB to be reduced and relay K1 opens. The ac power to J 1 is disconnected, ending the timing cycle.

The switch SW-2 is then thrown to the RESET position allowing C 1 to recharge for the next timing cycle.

Construction: The chassis board (\(1 / 8 \mathrm{in}\). perforated hardboard) is cut as shown in the assembly drawing, (Fig. 5) the mounting brackets (\(1 / 18\) in aluminum) are made and used to fasten the chassis board in the metal cabinet.
Install the tube socket, relay and power transformer on the chassis board. Then make a \(2-\mathrm{in}\). dial of white plastic or cardboard and mount it on the front panel by using a flat metal washer between the panel and the timing control hex nut. Insert a shakeproof washer between the timing control and the inside front panel. This will prevent movement of the potentiometer and alteration of the timing calibration.

Mount the toggle switch (SW2) and the power switch (SW1) on the front

3
panel. The ac outlet socket for the photo printer or enlarger is then installed on the top of the cabinet.

Install the terminal lug strips and the capacitors and resistors. Wire the circuit as shown in the wiring diagram (Fig. 3). Install a rubber grommet where the ac line enters the cabinet, and tie a knot in the line to pre-

Fig. 7: In this under-chassis view, we see the location of the principle parts. Parts placement is not critical.
the other time intervals the same way. Calibrate the dial in one second points up to 15 seconds and 5 -second points to 40 seconds.

If you want a longer time calibration than 40 seconds, increase the capacity of C1 by paralleling it with another paper capacitor. The exact value will be determined by experiment.

Operation: The photo contact printer or enlarger is connected to the timed ac outlet (J1) on the side of the cabinet. Set the time control to the desired exposure. Throw the toggle

Fig. 8: On top of the chassis, we see the positions of the tube, relay, transformer and locations of the controls.
switch to PRINT. After the time cycle, move the toggle switch back to RESET.
Normally, contact printers come with two lamps. One is a small red or yellow safelight, which is used to position the negative for printing. The other lamp is a white light, which is used to expose the print.
Rewire your contact printer as shown in the contact printer connection drawing (Fig. 4). The white light is connected to the elec-

MATERIALS LIST-ELECTRONIC PHOTG TIMER
Size and Description
R1 \(\quad 50,000\) ohms \(3 \cdot \mathrm{w}\) wirewound potentiometer Clarostat A58 or equiv.
25 megohm \(1 / 2 \cdot\) w carbon resistor
\(40,000-\) ohm w carbon resistor
1 mfd 200-v paper capacitor
\(0.1 \mathrm{mfd} 200 \cdot \mathbf{v}\) paper capacitor
8 mfd 150-v electrolytic capacitor
125-v \(15 \mathrm{ma}, 6 \cdot \mathrm{v} 0.6 \mathrm{amp}\) sec. Thordarson 26R37 or equiv.
SW1 SPST slide switch
SW2 SPST toggle switch
\(K 1\) SPDT 10,000 ohm de relay, Potter \& Brumfield LB-5 12AU7A tube
Cabinet \(4 \times 5 \times 6^{\prime \prime}\) aluminum minibox, BUD Cu-3007-A
Tube socket 9-pin, top mounting. Amphenol 59-406 or equiv.
2 ea. 3-terminal tie strips
1 ea. \(\quad 2\)-terminal tie strips
Misc. perforated hardhoard (chassis board), ac line cord, pointer knob, wire, etc.
tronic photo timer, while the safelight is connected directly to the ac line. This makes easier operation of the contact printer.

If you are using an enlarger and desire to turn off the darkroom safelight while exposing the print, an additional ac outlet can be added to the electronic photo timer. This outlet can be connected as shown in the optional safelight connection drawing (Fig. 6) and mounted on the side of the cabinet. The darkroom safelight is connected to this outlet and will be automatically turned off during the print exposure time interval.

Fig. 9 ; The completed unit with a contact printer plugged in. Notice the white plastic dial scale that you calibrate.

\title{
A 6-Transistor BC Radio \\ The Sweet Tone
}

MATERIALS LIST-SWEET-TONE RECEIVER
Amt. Reg.
Size and Description
1 3-transistor subminiature AM broadcast tuner (Lafayette PK-633)
\(12 \mathrm{mfd}, 6 \cdot \mathrm{v}\) ultraminiature capacitor (Lafayette CF.100)
2 miniature knob (Lafayette MS-185)
\(2321 / 32 \times 63 / 4^{\prime \prime}\) perforated Bakelite board (Lafayette MS. 305)

25 way binding posts (Lafayette MS.566)
See Fig. 3 before you cut:
\(2 \quad 7 / 16 \times 41 / 2 \times 63 / 4^{\prime \prime}\) wood cabinet sides
\(2 \quad 7 / 16 \times 41 / 2 \times 311 / 16^{\prime \prime}\) wood cabinet sides
Miniature parallel cable for connection to speaker (Lafayette WR-157 is 25 ft . roll)

Parts for this project were obtained from:
Lafayette Radio, 111 Jericho Turnpike, Syosset, L. I., N. Y.

This 6-transistor radio has unusually good tone and can drive a hi-fi speaker. It contains two ready-made circuit modules which minimize construction time and costs less than \(\$ 15\)

\author{
By FORREST H. FRANTZ SR.
}

THIS compact 6-transistor radio was designed to provide better fidelity than that available from ordinary small broadcast radios with limited frequency response and small speakers. The radio was built into a \(33 / 4 \times 4^{1 / 2} \times 6^{3 / 4}\) in. package which also contains the battery power supply. Terminals on the rear of the radio permit connection to a large high quality loudspeaker that can be located remotely from the radio. The radio can be placed on a coffee table, on a bedside table, a desk, or elsewhere convenient to the person who'll be doing the tuning. The loudspeaker can be positioned for best room coverage and at a point where the size of a quality speaker is not objectionable. The author built the Sweet Tone for his study. The radio is on a low table in front of a couch, and the speaker is located on a side chest on the other side of the room.

The Sweet Tone employs a ready-made 3 -transistor tuner (the Lafayette PK-633) and a ready-made 3 -transistor amplifier (the Lafayette PK-522.)

Construction: Modify the tuner as follows:
(1) Remove the .02 mfd . capacitor as indicated in Fig. 1.
(2) Remove the 30 mfd . capacitor as shown in Fig. 1 and replace with a 2 -mfd, 6-volt capacitor mounted under the board as shown

SCHEMATIC

FIG. 2: Remove the 30 mfd . AVC bypass capacitor shown here and replace with a 2 mfd . capacitor for better fidelity.
in Fig. 2. These changes to the tuner flatten its frequency response and improve overall fidelity.

Cut the wooden sides for the cabinet as shown in Fig. 3. The wood available for this was a trim board with a contoured edge, but a board with a square edge would be equally attractive.

Connect six No. 1, size C flashlight cells in series and fasten together in the general relative positions shown in Fig. 5. The cells are connected wtih bare hook-up wire soldered directly to the cells. The soldering iron should be up to soldering heat before being applied to the cells to minimize cell deterioration. The Burgess cells used have tinned ends and solder easily. The No. 1 cells were chosen because they will have a long life and are considerably more compact than the more common No. 2 cell. Fasten

\section*{REMOVE ALL TUNER LEADS EXCEPT BLACK (RIGHT ABOVE) AND MAKE CONNECTIONS AS SHOWN}
the cells together with rubber bands.
Lay the battery, amplifier, and tuner on the cabinet base as shown in Fig. 5 and interconnect them as shown in Fig. 4. The volume control shaft should be cut to a length of \(1 / 4\) in. prior to being connected in the circuit. The output transformer leads should be extended about 3 in . When wiring is completed, fasten the tuner to the cabinet base with short wood screws. Place a piece of sponge rubber under the amplifier and fasten the amplifier on the cabinet base with short nails or screws. Glue a retainer block on the cabinet base to hold the battery so that the rear cell is in line with the back of the base. Place the block so that the front corner is in line with the front edge of the tuner. Use Fig. 5

FIG. 5: Batteries, amplifier, and tuner are mounted on base. Wiring is complete except for speaker terminal connectionso
for guidance in positioning the components.
Now check for operation by temporarily connecting a loudspeaker to the output leads. If the set doesn't operate, recheck the wiring. When all is well, disconnect the speaker, and assemble the cabinet. Tack a piece of perforated board to the back of the cabinet base. Use this to get the cabinet square during assembly.
Glue and nail (use short brads) the sides to the cabinet base. Glue a \(5 / 8 \times 5 / 8 \times 21 / 4\) in. block, and fasten to the top of the cabinet. The block retains the battery in the vertical direction but permits the battery to be pulled out of the back when the rear perforated board is removed.
When the glue on the cabinet has set, remove the perforated back. Fill the edges and brad holes with plastic wood, sand, and stain or paint as desired. Figures 6 and 7 show the project at this stage of completion.

Cut the front panel from a piece of perforated board to the opening dimensions on your cabinet. In the process of cabinet construction, individual cabinet dimensions may

FIG. 6: Assemble cabinet on base. Note blosk which holds batteries.

FIG. 7: Rear view. Cabinet is assembled to base, Panel not installed.

FIG. \&: Front view of completed receiver. Left knob confrols power on-off and volume. Right knob controls station selector.
differ slightly from those cited here. Strive for a tight fit. Place the board in the front of the cabinet and locate the center for the tuning capacitor hole. Locate the volume control switch hole on the same horizontal line and at an equal distance from the opposite side of the board. Drill a \(1 / 4 \mathrm{in}\). hole for the volume control and a \(3 / 8 \mathrm{in}\). hole for the variable capacitor. Remove the front screw which holds the tuning dial on the tuning capacitor shaft, and remove the tuning dial. Fasten the volume control on the front panel, and push the panel into place in the

FIG. 9: Rear view of the completed umit. Output terminals are for connection of the remote loudspeaker of high fidelity type.
cabinet. If the fit isn't tight enough to hold the panel in place, apply a small amount of glue to the top edge of the panel. Push the panel against the front edge of the tuner and the battery retainer block.

Fasten the tuner dial and the volume control knob. Glue a small knob on the front of the tuner dial. The front of the receiver will look like Fig. 8 at this point.

Drill two \(1 / 8 \mathrm{in}\). holes in the back piece of perforated board for the output terminals (Fig. 9), fasten the terminals, and connect the output leads to the soldering lugs.

\title{
Experimenter's Chassis
}

\title{
Versatile, reusable chassis for experiments and circuit development
}

\author{
By W. F. GEPHART
}

WHEN working with experimental circuits the need for an experimenter's chassis becomes obvious. After experience with two home made and one commercial experimental chassis, the author decided to summarize his experience and design a chassis to meet these needs.
The following seemed to be important factors in considering design aspects:

The unit should be able to handle any type of tube or transistor available now or in the future. It should be compact, without being crowded, yet be able to handle several stages if necessary. Connections should be quick and easy to make and be secure. In multiple stage work, there should be an option of making certain leads (ground, filaments, etc.) common if desired. The chassis should be able to handle panel parts and mounted parts (transformers, relays, etc.). The unit should be durable and long-lasting and low in cost.

The unit shown here meets these conditions. The basic chassis takes various inserts to handle different tubes or transistors, and permits adaptation to future designs. Connections are made by Fahnestock clips, both as connection points and to tube socket pins. To be compact, yet permit multiple stage work, each basic unit only handles one tube or power transistor (or two low-powered transistors), yet any number of basic units can be plugged together for multiple stage work. When units are plugged together, switches give the option of making ground, B plus and/or filament leads common between units.

While each basic unit has a. panel for mounting switches and potentiometers, space is not allocated for chassis-mounted parts. Instead, a special mounting adapter was made that fits above the basic unit to take transformers or relays when required. This saves having waste chassis space when not needed.

By using high quality clips, connections do not load with solder, can be made quickly, and will last indefinitely. Each basic unit costs about six dollars and each tube-transis-
tor insert will run from about \(60 ¢\) to \(\$ 1.20\), depending on the socket and number of clips required. Basic units or inserts can be added in the future, in any reasonable number. Since each basic unit is only \(41 / 2 \mathrm{in}\). wide, a four-stage chassis would only be 18 in . wide, and a six-stage only 27 in . wide.

The parts list gives the material required for each basic unit. Since the drilling for the plugs and jacks in the side pieces is critical (so units will plug together properly),

ALL HOLES \(\frac{8}{64}\) " UNLESS SHOWN OTHERWISE FIGURE I: HARDBOARD TOP

\section*{ALL OTHER HOLES IN TOP \& SUB-BASE TOGETHER}

FIGURE 2 : PLYWOOD SUB-BASE
it is best to cut and drill side pieces together for the ultimate number required, and save the extras. For example, if you plan to build two basic units now, but feel that you might want two more later, cut and drill side pieces for all four units. The cost of the extra side pieces is trivial.

The following steps assume that more than one basic unit is being made, and reference to clamping pieces together refers to similar pieces for the multiple units.
First cut the hardboard top (Fig. 1), side pieces (Fig. 3), plywood sub-base (Fig. 2), and white pine end pieces to the size shown. Next, cut the notches for the switches in the plywood (required if switches with shanks of less than \(15 / 32\) in. are used; switches shown in parts list have \(1.3 / 32-\mathrm{in}\). shanks).

Clamp the plywood sub-bases together, with ends and sides aligned, and drill a \(1 / 18-\mathrm{in}\). hole through all pieces at the center of the large insert hole. Separate the pieces, and cut the insert hole in each.
Next, nail the front and back pine supports to the ends of the plywood sub-base. Set the sub-bases and ends on a flat surface, and check the hardboard side pieces to be sure they are flush with the top of the plywood. Clamp all side pieces together, and drill four \(\% / \neq-\mathrm{in}\). holes at points indicated. Before removing the clamps, mark the top and front edges with nail polish, to help keep the pieces
in proper alignment during assembly.
Remove the clamps, and enlarge the holes in half of the side pieces to \(1 / 4 \mathrm{in}\). and fasten them to the plywood and end pieces, properly aligned, using brads and glue. Use a side piece with \(\%\) \%-in. holes on the right side (looking from the front), and a piece with \(1 / 4 \mathrm{in}\). holes on the left side.

Clamp the hardboard tops together, and drill all holes except the switch holes. Remove the clamps, hold the top in place on the plywood, and drill the holes marked " X ". Temporarily fasten the top to the plywood with \(5 / 8 \times 6-32\) screws and nuts in these holes, and then drill \(\% / \%-\mathrm{in}\). holes through the plywood at holes marked " \(Y\) ". Drill \(1 / 2-\mathrm{in}\). holes through both hardboard and plywood for the switches.

Remove the top and apply decals and lines for common-connected terminals (Ground and B plus) as shown. These lines can be painted on, or put on with \(1 / 18-\mathrm{in}\). colored graph tape, such as Chart-Pak available at drafting supply houses. It is best to then spray the panel with lacquer or varnish to

\section*{MATERIALS LIST-EXPERIMENTER'S DEVELOPMENTAL}

Amt. req. Size and Description For Each Basic Unit
\(11 / 8 \times 41 / 2 \times 10^{\mu}\) hardboard (top)
\(1 / 8 \times 11 / 2 \times 10^{\prime \prime}\) hardboard (sides)
\(1 / 8 \times 4 \times 41 / 2^{\prime \prime}\) hardboard (panel)
\(1 / 4 \times 41 / 4 \times 10^{\prime \prime}\) plywood (sub-base)
\(1 / 2 \times 11 / 2 \times 41 / 4^{\prime \prime}\) white pine (ends)
(Use tempered hardhoard. two sides smooth)
\#10 Fahnestock clips (Cat. \#41 H 705)
G.C 33.034 banana plugs (Cat. \#41 H 400)
G.C 33.192 banana jacks (Cat. \(\# 41\) H 470) soldering lups
SPST togqle switch C.H 8280 . K16 (Cat. \#34 B 500)
OPST toggle C.H 8360.K7 (Cat. \#34 B 502)
\(1 / 2^{\prime \prime} \times\) \#6 th woodscrews
\(1 / 2^{m} \times \# 8\) ih woodscrews
\(5 /{ }^{\prime \prime \prime} \times 6.32\) machine screws and nuts For Each Transformer-Relay Adapter
\(1 / 8 \times 31 / 4^{\prime \prime} 41 / 2\) hardhoard
8.32 brass thread rod. \(31 / 2^{\prime \prime}\) long
8.32 brass nuts

For Each Low. Power Transistor Insert
\(1 / 8 \times 31 / 4^{\prime \prime}\) diameter disk hardboard
transistor sockets. Elco 3304 (Cat. \#41 H 093)
\#10 Fahnestock clips (Cat. \#41 H 705)
\(1 / 4^{\prime \prime} \times 2.56\) machines screws and nuts
\(1 / 4^{\prime \prime} \times 6.32\) machines screws and nuts
For Each Octal-Transistor Adapter
\(11 / 4^{\text {" }}\) dia. disk plastic, metal. etc.
transistor sockets. Elco 3304 (Cat. \# 41 H 093)
\(1 / 4^{\prime \prime} \times 2.56\) machine screws and nuts
\(13 / 4^{n} \times 6.32\) machine screw and nut
Octal tube base with all eight pins
For Each Power Transistor Insert
\(21 / 2 \times 31 / 4^{\prime \prime}\) piece 18.20 gauge aluminum with \(1 / 2^{\prime \prime}\) flange on end
\(1 / 8\) thick \(31 / 4^{\prime \prime}\) dia. disc hardboard
\#10 Fahnestock clips (Cat. \#41 H 705)
soldering lugs
miniature allipator clips. Miller \#30 (Cat. \#41 H 142)
\(1 / 4^{\prime \prime} \times 6.32\) machine screws and nuts
For Each Tube Insert
\(1 / 8\) thick \(31 / 4^{\prime \prime}\) dia. disk hardboard
tube socket as desired, with mounting screws and nuts
\#10 Fahnestock clip. \(1-1 / 4 \times 6.32\) screw and nut for each tube pin
Catalog numbers refer to Allied Radio. 100 N. Western Are., Chicago 80, III.

8-32 NUTS SOLDERED

MOUNTING DETAIL TRANSFORMER ADAPTER

protect the decals and lines.
Next, cut and drill at least one transformerrelay adapter plate (Fig. 3). Lay it on the hardboard top, with one long side flush with the front, and mark the position of the four \(11 / 16-\mathrm{in}\). corner holes on the hardboard top. Drill four \(3 / 18-\mathrm{in}\). holes at these points to hold the adapter supports.
Place the hardboard top back on the subbase, and fasten in place by mounting clips in the " X " and " Y " holes. Use \(5 / 8 \times 6-32\) screws and nuts, and include a solder lug
between the nut and underside of the plywood. Then, using an awl or nail, start screw holes in the plywood for the other clips, and attach them, using \(1 / 2 x\) \#6 RH woodscrews. Mount the switches, with the double pole switch in the center hole.
Mount four banana plugs (with solder lugs on the inside) on the right-hand side piece, and four banana jacks (with lugs on the inside) on the left-hand side piece. Cut and drill the front panel (Fig. 4), and fasten to the front support with two \(1 / 2 x\) \#8 RH woodscrews. The top three holes are for

\footnotetext{
FIGURE 5: PICTORIAL WIRING
}

rotary switches and potentiometers, and the bottom three are for toggle switches, push buttons, and pilot lights.
The basic units should be wired underneath as shown in Fig. 5. Route all wiring around the insert hole, and be sure the filament wiring is consistent, the right hand clip always connected to the front jack and plug. This permits proper polarity on dc filaments when using several basic units with common heaters.

All inserts are slightly less than \(31 / 4 \mathrm{in}\). diameter, to fit snugly in the insert holes in the top, and all have clip mounting holes on a \(7 / 8-\mathrm{in}\). radius. They can be made of hardboard, Bakelite, plastic or any other insulating material that is not more than \(1 / 8 \mathrm{in}\). thick. With the exception of the dual low-power transistor insert (Fig. 6), tube sockets are mounted in the center of the insert, with the clips arranged around the socket in line with the tube socket pins. For octal and other large sockets, it is best to use \(1 / 10\) in. stiff, hard plastic so retainer ring sockets can be used, to save the space required for mounting screws.
Since fewer parts are usually involved in transistor circuits, two sockets can be mounted on one insert (Fig. 6). For power transistors, where some sort of heat sink is usually desirable, a special insert (Fig. 7) is used. The holes in the aluminum plate will accommodate a number of different power transistors, and space is available for other configurations. In this case, leads and alligator clips are attached to the Fahnestock clips, and fastened to the transistor terminals after mounting.

Another means of using low-powered transistors is the adapter shown in Fig. 6. A base from an old octal tube has two transistor sockets mounted in it, and adapts the

regular octal tube insert for transistor use. It saves making a special transistor insert, and saves a few Fahnestock clips. The fourpin transistor sockets will handle most lowpowered transistors.

The transformer-relay adapter (Fig. 3) is supported by four \(31 / 2 \mathrm{in}\). sections of \(8-32\) threaded brass rod, and two \(8-32\) nuts, one being soldered to the top to form a head. Regular 8-32 screws are not available in this length, and at least \(31 / 2 \mathrm{in}\). is required to clear panel-mounted items.

In using the adapter, the component is fastened in at least one hole, and leads are run through one or more of the large holes. Panel-mounted items are wired to the chassis before the adapter is put in place. There is room under the adapter to connect the wires from the component to the proper clips when the adapter is in place.

In using the chassis, many items can be connected between clips (including tube socket clips), and short lengths of wires can be used to make connections between related clips. Soldering may be required for panel-

Fig. 8: With one slage complete on the lefi chassis, a second chassis is plugged in for development of next stage.

Fig. 9: The basic unit shown with some accessorizs. These fit the large center hole and permit breadboarding circuits.
mounted items, but this can be avoided if a wire with an alligator clip on one end (to attach to potentiometer or switch lugs) is used.

When multiple chassis units are used, the switches permit interconnecting Ground, B plus, and filament leads if desired, so that only one set of leads and connections has to be made to the power supply. However, connections must be made between the tube insert filament clips and the regular filament clips on each basic unit.

Two cautions about using multiple units. First, when unplugging basic units, pry them apart carefully at the center (between the filament lead plugs), using a screw driver.

Fig. 10: Basic unit seen from the top with no insert. Lines indicate commonly-connected clips. Note plug and jack positions.

Fig. 11: Underside of basic chassis shows how wiring is dressed around center hole and flament leads are iwisted for anti-hum.

\title{
A Mixer for Two RF Signals
}

\author{
By JAMES A. FRED
}

DURING the past few years many oscillator circuits have been published. The circuits have varied in complexity from the simple one-tube types to the multi-tube and transistorized versions. Very little has been said about how to use these circuits, how to check them to see if they are operating as intended or whether or not they are on the frequencies they were designed for. One of the best ways to check the frequency of an experimental oscillator is by beating its output against the output of a known frequency oscillator. As two frequencies are beat together many new frequencies are generated. The strongest of the new frequencies will be the sum of the two frequencies and the difference between the two frequencies. We are interested only in the difference frequencies. The difference frequency will decrease as the frequency of the unknown signal approaches the frequency of the known signal. When the two frequencies are the same we will have a null point or "zero beat."
Usually whenever it was necessary to determine the frequency of a new oscillator circuit the author would haywire together a diode, some resistors and capacitors and try to listen for a zero beat. This was inconvenient and unsatisfactory so a mixer was built for two RF signals. This mixer has proven to be so useful and convenient that every electronic experimenter, radio amateur, and school electronic shop should have a similar
device. Basically, two twin triodes are connected so that the two signals are mixed in the first stage and then the difference frequency is amplified and terminated at the headphone jack. The user can listen to the beat note. As the unknown oscillator is tuned, the frequency will go lower and lower and lower until a point is reached where the tone disappears. At this point the two oscillators are on the same frequency. If a visual indication is desired an ac VTVM or an oscilloscope can be used. When the audible note falls below 30 cycles, the meter needle will swing back and forth violently. When the needle drops to zero you will have zero beat.
The mixer is housed in an aluminum box \(4 \times 5 \times 6 \mathrm{in}\). in size. In order to give the appearance of a cabinet rather than a box, we have turned it up on its side to present the \(5 \times 6\) sulface to the viewer. The \(U\) shaped side has been cut into three pieces and two are used to form a top and bottom. This leaves the back open for removal of the tubes and ventilation. You can also plug in the cables from the known and unknown frequency oscillators. As you can see from the photograph (Fig. 1) this cabinet arrangement makes a very attractive looking instrument.

An L-shaped chassis can be bent up from a piece of aluminum or galvanized sheet metal. A lip is bent up at the long side of the L for fastening to the front of the aluminum box. Mount the gain control, pilot light, and

FIG. 1: The front panel for the mixer is finished with decals for a professional appearance. Use care during drilling, punching, to avoid scratches.

headphone jack on the front of the box before mounting the chassis. Mount the input connectors and the line cord on the back apron of the chassis. Mount the tube sockets, transformer, capacitor and do the bulk of the wiring before mounting the chassis to the front panel. The wiring isn't too particular but you should remember to shield the leads to and from the volume control. Then do the interconnecting wiring between the chassis and front panel. After the wiring is completed plug in the line cord and check the pilot light and filament voltages. Then insert the tubes in the sockets. The transformer used was salvaged from a defunct TV booster, but the one specified in the parts list will provide very good results. If the voltages all check out, put the tubes in the sockets, plug in a pair of headphones, and you are in business. Turn up the volume and you should hear a slight rushing sound. Touch the center of each input connector and listen for a loud buzz. If you have wired everything correctly you will get the buzz. If you haven't then all will be silent.
\begin{tabular}{|c|c|}
\hline & ERIALS LIST-MIXER FOR TWO RF SIGNALS \\
\hline Amt. Req. & Size and Description \\
\hline 4 & 47k 1/2.w carbon resistor \\
\hline 2 & 27k 1/2 \({ }^{\text {w }}\) carbon resistor \\
\hline 2 & lk 1/2.w carbon resistor \\
\hline 1 & 2700 ohm 1/2.w carbon resistor \\
\hline 2 & 100k 1/2-w carbon resistor \\
\hline 1 & \(330 \mathrm{ohm} 2 \cdot \mathrm{w}\) carbon resistor \\
\hline 1 & \(220 \mathrm{hmm} 2 \cdot \mathrm{w}\) carbon resistor \\
\hline 1 & 27k 2-w carbon resistor \\
\hline 1 & 500k potentiometer with switch \\
\hline 1 & 33 mmf capacitor \\
\hline 1 & 500 mmf capacitor \\
\hline 1 & 3000 mmf capacitor \\
\hline 1 & 250 mmf capacitor \\
\hline 3 & 5000 mmf capacitor \\
\hline 1 & 100 mmf capacitor \\
\hline 1 & . 002 mfd capacitor \\
\hline 1 & \(40 \times 40 \mathrm{mfd} 200-\mathrm{v}\) electrolytic capacitor \\
\hline 1 & \(30 \mathrm{mfd} 200 \cdot v\) electrolytic capacitor \\
\hline 2 & 9.pin tube sockets \\
\hline 2 & 12AX7 tubes \\
\hline 1 & 90 ma selenium rectifier \\
\hline 1 & pilot lamp and socket \\
\hline 1 & 115 v pri., 150 v, 6.3 v sec. Thordarson 22R12 or equal \\
\hline 1 & \(4 \times 5 \times 6^{\prime \prime}\) aluminum box \\
\hline
\end{tabular}

The schematic diagram shows that the signal from the frequency standard is applied to the cathode of the input section of the 12AX7

FIG. 3: Parts placement under the chassis is not critical, but leads to and from the volume control should all be kept short.
tube. This is done for two reasons: the first being that this signal is usually much stronger than the unknown signal. Secondly as this is a low impedance circuit it will load it to some degree. The unknown fiequency signal will probably be a weaker signal and is therefore applied to the higher impedance grid circuit. The two signals are mixed and several new frequencies are generated. These frequencies are the sum of the two frequencies and the difference between the two frequencies. The sum frequency will usually be a high RF frequency which will not be accepted by the succeeding circuits, while the difference frequency will be a much lower frequency. If our two signals are nearly equal in frequency the difference frequency will be in the audible range and we will hear it in the headphones. For instance, if our standard
irequency was 1 megacycle or \((1,000,000\) cycles) and our unknown frequency was \(1,000,900\) cycles, then the difference frequency would be 900 cycles which is easily heard. Now as we tune the unknown frequency oscillator until its frequency is 1 megacycle, the audible note will drop in frequency until it reaches zero beat and can no longer be heard. We would then know that the unknown frequency was identical to the standard frequency. We can likewise mix any two signals and if we had a cycle counter or audio frequency meter we could measure the frequency difference directly. For the average experimenter, listening to the audible tones will usually suffice. If you are used to working with RF oscillators you will find this signal mixer for two RF signals a valuable addition to your electronic workshop.

FIG. 4: Microphone con. nectors are shown for input and output terminals. Use any coaxial connecpor.

\title{
Getting Started in Radio Control
}

\begin{abstract}
Controlling a free-flying airplane model from the ground is an unequalled thrill. You launch your plane, control it in flight, and when the engine stops, bring the plane to Earth safely at your feet
\end{abstract}

\author{
By JOHN T. MACKEN and K. KENNETH SMALLEY
}

Micro Miniature Controls Div. Otarion Electronies, Ine.

yOU do not have to have any technical knowledge of electronics to be successful in radio control modeling. The ability to follow simple instructions and the skills of the average do-it-yourself hobbyist are all that are necessary. New model airplane kits and miniature radio equipment are reasonably priced, and take the guesswork out of radio control today.

Everything can be obtained at your local hobby shop or from hobby mail order houses.

Note that each component you buy for this project-the receiver, the transmitter, the escapement, the switch, the engine and the model airplane kit-will have instructions for its use. Follow these instructions to the letter, unless exceptions are noted in this article.

Building the Airplane: Fig. 1 shows all the parts of the Schoolboy Kit. This kit is well engineered, with all wood parts die cut, requiring only that you carefully push out the pieces from the blanks. Follow the exact assembly sequence shown on the kit plans.

Complete your fuselage up to the point as shown in Fig. 4 on the airplane plan.

Install the Engine, Radio, Escapement,
 \#1 external tank in the fuselage behind the engine. Remove the engine tank by taking off back plate and install the special mounting plate included with the engine.

The tank filler and overflow tubes are extended to the outside of the fuselage through holes in the fuselage side with neoprene tubing (Fig. 3). Extend the tank engine feed tube through the firewall with neoprene tubing and connect it to the engine fuel intake nipple. Brace the tank with scrap balsa and cement it in position.
At this time it is advisable to coat the entire tank compartment with several coats of clear Aerogloss for fuel proofing.
Escapement: Drill holes through laminated plywood-balsa tail piece (\(\mathrm{F}-6\) and \(\mathrm{F}-6 \mathrm{~A}\)) 1 \(1 / 32\) in. diameter at location marked on F-6A. Make rudder and elevator torque rods as shown on side view of fuselage plan to exact length. Bind \(1 / 22\) in. wire to ends of balsa torque rods with thread and cement well.

To obtain clearance for escapement, center section of bulkhead (\(\mathrm{F}-4\)) escapement mount must be cut out. The torque rods can be inserted through bulkhead (\(\mathrm{F}-4\)) and the wire ends extended through F-6A at the rear of the fuselage. The forward wire ends of the torque rods should be inserted in appropriate holes in the escapement and the escapement can be bolted to bulkhead (\(\mathrm{F}-4\)) as shown in Fig. 4. Now the brass rudder yoke and elevator arm, which come with the escapement, can be soldered to the wire torque rod ends (Fig. 4). Clean all metal parts with emery paper before soldering. The top and bottom of the fuselage should now be covered as shown on the Schoolboy kit plans.

Check torque rods to make sure there is no binding-torque rods

FIG. 1: The Schoolboy model kit, before assembly. The plane is complete except for dope, glue, radio, engine, tank and tubing.

must be completely free of friction.
Radio Installation: Cement foam rubber (included in kit) to radio mounting slide, using Pliobond or Weldwood contact cement. Cement radio to foam rubber, using same cement (do not use Ambroid or epoxy cement).
The Otarion \#2705 toggle switch can be installed as shown on the Schoolboy plan in Fig. 6 at this time.

The radio control system is now ready to be wired.

Use a soldering iron of about 25 to 40 watts (and rosin core solder only should be used). Each connection should be wrapped around its terminal before soldering.

Tape the two E-91 batteries together with opposite polarity terminals side by side and clean the end contacts with sandpaper. Solder a short jumper wire between one pair of adjacent (+) and (-) terminals. Solder the red (+) lead from the receiver to the remaining (+) battery terminal. The receiver and batteries can temporarily be placed in the airplane to obtain the correct wire lead lengths. Solder the remaining (-) battery
contact to a piece of black wire and the other end of this wire should be soldered to one of the pigtail terminals extending from the rear of the switch as shown in the wiring diagram. Cut off the other pigtail terminal as it is not used.
Solder the black wire from the receiver to the switch soldering terminal immediately adjacent to the mounting bolt. (A small hole is provided for this purpose.) Make sure that enough slack is left in the wiring so that the receiver and mounting slide can be removed from the airplane for battery replacement. Solder another piece of black wire to the same switch soldering terminal and run it to the top escapement terminal and solder. Solder the white wire from the receiver to the adjacent escapement terminal. The bottom escapement terminal is left bare and is not used. Run the brown antenna lead along the side of the fuselage and anchor it through a small hole in the top of the rudder. If necessary, a piece of scrap wire can be soldered to the antenna lead to make it reach the rudder. All wiring is now complete Use a

FIG. 2: The assembled fuselage with all formers, bulkheads, engine, tank, escopement and torque rods installed. Top and bottom removed for photo.

FIG. 3: Engine overflow and filler tubes extend out through sides of fuselage. Gas feed line comes under engine and connects to right side at fuel intake nipple.
small drop of cement to hold the wires in place. Fig. 6 shows the completely wired radio installation. As the batteries last a long time in this circuit, it is worthwhile to solder them in.

Install the escapement rubber. Use 316 in . rubber available at any hobby shop rather than the \(1 / 4 \mathrm{in}\). rubber supplied with the kit. A long piece of solder is a handy tool to install the rubber from the rear of the airplane. Be careful that the escapement rubber does not accidentally become wound around the torque rods. Make a rubber loop by tying a square knot in the rubber. Wind approximately 150 turns into the rubber in a clockwise direction from the rear of the airplane. The escapement is now in a neutral position and the torque rods can be bent as shown on the Schoolboy plans and in Fig. 5. Install the wire yokes on the rudder and elevator as shown on the plans and Fig. 5. Install the elevator spring stop on the stabilizer at this time. Now test radio control installation.

Radio Testing: Turn the airplane switch on. The receiver is now operating and waiting for a signal from the transmitter. Turn the transmitter switch on and extend the antenna. If you are standing close to the airplane, the light on the receiver will probably light and the escapement will operate. This will occur without pushing the transmitter key and is a good sign that shows that everything is operating properly, although you are so close to the airplane that the transmitter is overloading the receiver. (Called "swamping.") If you place your hand on the transmitter antenna and move away from the airplane, the light bulb will go out and the escapement will return to neutral. Now press the transmitter key and hold it down. The rudder will move to the right. A little practice with keying and you will be able to obtain any control position very easily without concentrating on the transmitter key or taking your eyes off the airplane model.

Some batteries have a cap at the negative terminal that is held to the zinc battery case only by the cardboard wrapping. This can cause an intermittent connection. If this type of battery is used, the leads must be soldered directly to the zinc case. The negative end cap can be removed by carefully cutting around the negative end of the cardboard wrapping with a sharp knife or razor blade.

Never leave the escapement rubber wound when the airplane is not in use. If left wound, it deteriorates rapidly.

Discard batteries when they reach 2.4 volts. This voltage is measured right at the battery terminals with the receiver receiving a signal, the light bulb lit and escapement energized.

If no voltmeter is available, the approximate battery condition can be determined by noting how many turns can be put into the escapement rubber with new batteries before the escapement will no longer operate. As the batteries deteriorate, the number of turns will decrease.

Before the airplane is flown, one more check must be made for distance and tuning. Have an assistant operate the transmitter. Carry the fuselage, minus the wings, approximately 100 or 200 yards away. Have your assistant turn on the transmitter and press the key. With the receiver turned on, the light bulb should light, possibly only dimly. Now partially slide the receiver from the airplane and using a non-metallic screwdriver or tuning wand, slightly rotate the slug in the receiver tuning coil clockwise. The bulb will probably get dimmer. Rotate the slug in the opposite direction. The bulb will first get

FIG. 4: Front of the escapement. Top torque rod is the rudder yoke and left side is up elevator. Note Otarion switch. It is held in place by cementing to balsa facing.

\section*{MATERIALS LISTgetting started in radio control} Amt. Req.

\section*{Size and Description}

Model OT 31 transmitter, Otarion, \(\$ 39.95\)
Model 0-21 receiver, Otarion, \$24.95
Modef 2705 switch, Otarion, \$1.98
escapement, Babcock Mark II, \$8.95
airplane kit, Schoolboy by Top Flite. \(\$ 3.50\)
\#E-91 batteries, Eveready or equal @ 50c
engine, . 010 Cox, \(\$ 7.95\)
gas tank, Perfect \#1 39
Misc. cement, dope, thinnep.
(Note: Otarion Inc., South Post Rd., Ossining, N. Y
Top Flite Models, 2635 S. Wabash Ave., Chicago 16, III. Babcock Models, Newport Beach, Calif.
L. M. Cox Mig., Co., 730 Poinsettia, P.0. Box 476 , Santa Ana, Calif.
brighter and then dimmer again. The receiver is now in tune and should not have to be touched again. Before every day's flying, the radio installation should be given a distance check of about 100 to 200 yards. Press the transmitter buttons to get right, left and up as a safety precaution and to be sure everything is working.
Flying Your Airplane: To start the engine, read over the instructions supplied with your engine several times. Obtain the following accessories from your hobby shop:
1. .010 glow plug starting clip with wires.
2. \(11 / 2\) volt starting battery (large doorbell battery is just fine).
3. Gas tank filler bulb or pump.
4. Red Can-Thimble Drome Racing Fuel (no other type or kind of fuel that we have tried is satisfactory for this tiny engine).
Fill the gas tank with fuel until it runs out overflow.

Close the engine needle valve all the way, open needle valve five turns counter-clockwise.

Hold finger over air intake and turn motor over until fuel line is full. Connect the plug clip and batteries to engine.

Turn engine over by hand until top of piston is up as far as it goes. Prime into exhaust port with racing fuel.

Hook starter spring over propeller and wind propeller about three turns, then release sharply. Engine will spin over in counter-clockwise direction.

Engine may start. If it does, adjust engine needle valve for top speed.

If engine starts, runs fast, then stops, open needle valve a turn, prime engine and try

again. If engine just pops, it may be flooded. Crank several times and/or turn needle \(1 / 2\) turn clockwise.

Engine will start after several cranks. Adjust needle valve for top speed, remove glow plug battery clip. Engine will continue to run. You are ready to fly.

Have a friend take your plane about 30 ft . from you, nose pointed into the wind. Turn on the switch in the airplane. Turn on the switch in the transmitter.

If everything is working, have your helper run with aircraft, then release plane without throwing hard. Aircraft should rise and continue to rise. Plane will turn in the direction you send. If you hold either right or left, plane will go into a spiral and lose altitude. This is the way you bring your plane down under power.

Now that you have started in Radio Control, there are many other R/C systems that you may want to try-proportional, multi and many more. Rudder and up elevator only, as in the Schoolboy, will give you many pleasant hours, but the sky's the limit. Good luck!

FIG. I: Items in foreground are all that are needed to canvert the flashgun into a more dependable, economical B-C unit; 22.5-vall "B' battery, small piece of friction rape, plastic pill botHe, rubber bands, 250 mfd 25-volt capacitor, small bolf, two nuts, and sleeving.

\title{
Souped-Up Pro Flashgun A Bargain for Better Pix
}

\author{
By CIARENCE JONES
}

FOR less than \(\$ 10\) you can have a professional flashgun with souped-up firepower, halting those embarrassing duds and bringing improved lighting into your pictures -a little like having your cake and eating it, too.
In the past few years, American camera bugs have clustered like moths to miniature flashguns. Therefore the market is flooded right now with used, professional-type tradeins. Camera stores are selling them cheap.
But you won't see a professional photographer making the switch to miniatures. Why? Because the little folding-fan guns are fragile, and most are very limited in what they can do. But they're selling well because they're small enough to put in your pocket and they almost never misfire.
The secret of their dependability is their battery-capacitor (B-C) power units.

Electric current from a flashgun ignites a tiny wire filament inside the bulb. The whitehot filament, in turn, ignites a primer coated
on the filament support wires. The primer then ignites the wire foil that produces most of the light from the bulb. It takes about three amps to heat the filament white-hot in onethousandth of a second, as it was designed to do.

Fresh "C" and "D" size flashlight batterìes can deliver about 5 amps . Penlite cells produce about \(31 / 2 \mathrm{amps}\).-just over the minimum.

A few shots or a few months on the shelf and the batteries may drop below the \(3-\mathrm{amp}\). minimum. Then the entire chain reaction is delayed by a slow-heating filament. Or the filament may not get hot enough to trigger the primer and the bulb doesn't fire.

A B-C unit uses one of the new miniature batteries that supplies 15 or 22.5 volts in a package smaller than a standard "C" cell.

Hooking one of the batteries to a 250 mfd capacitor lets the battery pump just the right amount of current into the capacitor. Then the charge is stored, waiting for the shutter to trip.

When the shutter opens and completes the circuit, - a full charge leaps across the filament, causing the entire chain reaction within the bulb to come off exactly on schedule.

Poorly lighted pictures are often the result of bulbs that got off to a slow start and didn't reach their peak until the shutter was closing.

The capacitor in a B-C unit unloads its charge instantly and the battery immediately begins building up a new charge. With a fresh battery, charging of the capacitor is almost instantaneous. As the battery gets weaker, charging time increases. After about a year of steady use, the battery may take longer to charge the capacitor than it takes to change bulbs and wind film for the next shot. Then it's time for a new battery.

One of the professional guns can be converted to B-C firepower with a \(250-m f d 25-\) volt capacitor (available from Allied Radio Corp., \#19L270 for \$1); a plastic pill vial, a small stove bolt and two nuts; a patch of friction tape, and two rubber bands (Fig. 1).

Don't pay more than \(\$ 10\) for a used trade-in. Camera stores don't trade customers new equipment for old without taking in some cash. The best folding units cost about \(\$ 11\).

The Heiland flashgun being converted in the accompanying pictures cost the author \(\$ 6\). It was in a cardboard box full of used flash equipment. The price tag said \(\$ 12.95\), but the camera store was glad to get \(\$ 6\).

A professional-type unit will have a cylindrical battery case for size "D" or "C" flashlight batteries; a bracket from which the flashgun can be quickly released for off-camera lighting; a removable external cord connecting the flashgun to the camera synchroni-

FIG. 2: First, drill three small holes in the bottom of the vial. The one in the center should be the same diameter as your stove bolt. The other two are drilled close to the edge of the bottle on opposite sides, large enough for lead wires on the capacitor.

FIG. 3: Dress negative lead wire of capacitor closely up the side of capacitor, toward positive end. Put a sleeving on the positive lead. If you have no sleeving, slide the insulation from a piece of bell wire and use it. Cover positive end of capacitor with friction tape. Install the stove bolt in the vial with the head inside the bottle.
\begin{tabular}{|c|c|}
\hline & PARTS LIST \\
\hline & q. Size and Description \\
\hline 1 & \(25-\mathrm{wv}, 250 \mathrm{mfd}\) capatitor (Allied Radio Corp., \#19L270, \$1.02) \\
\hline 1 & 7 -dram plastic pill vial \\
\hline 1 & 22.5 -volt "B" photoflash battery \\
\hline 1 & \(1 / 4\)-in. stove bolt, about \(1 / 16\) or smaller \\
\hline 2 & nuts to fit above boit \\
\hline 1 & 3 -in. strip of insulation from common bell wire \\
\hline 2 & small rubber bands \\
\hline
\end{tabular}

\section*{PARTS LIST}

No. Req. Size and Description
\(1 \quad 25-\mathrm{wy}, 250 \mathrm{mfd}\) capacitor (Allied Radio Copp., \#19L270, \$1.02)
lastic pill vial
\(1 / 4-\mathrm{in}\). stove bolt, about \(1 / 16\) or smaller nuts to fit above bolt
strip of insulation from common bell wire small rubber bands
zation fitting, and a household-type female outlet for plugging in extension flash.
Taking the flash off the camera and holding it higher than your subject's head eliminates the harsh, pasty skin tones that are the mark of amateur flash pictures. Overhead artificial lighting and sunlight have accustomed our eyes to regard the shadows from elevated lighting as natural, on-camera flash lighting unnatural.

The most expensive folding flashguns have a feature for swiveling the unit so the light will bounce off the ceiling. With the flash of the camera, pointing it at the ceiling provides the same effect.

The extension outlet on a professional gun provides a way to add back or side lighting to flash pictures. The B-C unit described here will provide enough juice for firing a bulb at the camera and igniting another simultaneously at the end of a \(50-\mathrm{ft}\). extension cord.

FIG. 4: Slide the capacitor into the vial with the positive end toward the stove bolt. Dress the wires so the negative lead runs up the side of the capacitor and out one of the holes in the vial. The insulated positive lead runs out the hole on the opposite side.
FIG. 5: Now crimp the negative wire to the stove bolt and tighten the nuts to insure a good connection, but be very careful not to crack the plastic. The stove bolt should be short enough sa that the second nut can be threaded only partially. This recess holds the negative pole of the battery.
Off-camera flash leaves just one hand to aim the camera and trip the shutter. It may seem awkward at first, but aiming the flash can provide even lighting for both foreground and background in your pictures. With a little practice, you'll scowl at on-camera flash

FIG. 6: Place the negative pole of a 22.5 -volt battery in the recess. Then run the insulated lead wire from the positive end of the capacitor up along the side of the battery. Leave the tip bare and wedge it tightly under the pasitive battery pole strip.
FIG. 7: Secure the lead wire against the battery with two rubber bands. The wire is stiff enough to hold the batlery firmly in place. Slip the completed unit into the battery case and it's now ready to be fired.
poppers, as beginners.
Converting one of the professional flashguns takes about 15 minutes. For "C" size battery guns, use a 7 -dram plastic pill vial. A taller vial with a larger diameter is needed for a "D" size unit.

\section*{Clothespin Switch}

APLASTIC, spring-loaded clothespin makes a nifty emergency switch for low voltage circuits. It offers something more sophisticated than a pair of wires which you touch together when you don't have a switch. And it has some merit and application even when the situation isn't an emergency. Furthermore, you are offered a choice of several modes of operation.

The clothespin switch is a momentary contact, normally open switch. You depress the contact or handle end to close the circuit. The pin I used had the necessary holes in the handles. Simply fasten the stripped wire ends
under nuts serving as terminals with small machine-screw heads serving as switch contacts. Fasten electrical tape over the nuts for insulation, and heed this safe rule: Don't use this switch in circuits with more than 20 volts or 1 ampere.

To make a normally closed momentary contact switch, attach the machine screws and nuts at the other end of the pin.
To convert the normally closed momentary contact switch to a regular on-off switch, simply stick a piece of Bakelite or thick cardboard between the contacts to effect turn-off. -F. H. Frantz.

\title{
Which Way Is Forward?
}

\title{
Get the most from your TV or FM antenna
}

\author{
By FRED BLECHMAN, K6UGT
}

ARE you getting the proper performance from your TV or FM antenna? FM stereo multiplex and color TV reception especially require a good signal at the receiver for proper operation, so the many factors which can attenuate a signal on its way to the receiver deserve special consideration. Here are some hints that can help you insure that your antenna installation is doing the job it was designed to do.
Aiming the antenna: A surprising number of antennas are pointed in the wrong direc-tion-usually backwards! Since the front-toback ratio of many simple antennas is not very high, you can easily have your antenna backwards and still get a usable (though reduced) signal.

Which way is forward? The following rules-of-thumb usually apply:
(1) The shorter elements are the "directors," and should be aimed toward the station. The "reflector" elements are behind the "driven element," to which the "twinlead" attaches. See Fig. 2.

2
(2) If "vee" shaped elements are used, the open end of the vee should point to the station.
(3) On antennas with an array of elements forming a screen or a fan, the small elements are forward, and the screen acts as a reflector and also shields the pick-up elements from signals at the rear, thus minimizing ghosts and co-channel interference.
(4) For a particular channel or frequency, you may find that the cleanest signal is actually obtained when the antenna is aimed to one side of the station, due to local topography.
(5) In'many localities the TV stations are located in one spot, but the FM stations are scattered. In this case, a turnstile-type FM antenna gives essentially equal pick-up from all directions. With directional antennas, the use of an antenna rotator might be a necessity, especially in fringe areas.
Twinlead tactics: (1) Make sure the twinlead is properly attached to the antenna terminals, both at the antenna and at the re-

FIG. 1: Even the simplest of antenna configurations may require periodic cleaning and adjusiment to obtain peak performance. A better picture is the reward.

FIG. 3: The open end of the double vee should face toward the transmitting station, like the open mouth of a funnel.

FIG. 4: An antenno rotator is controlled from inside the house and permits you to point the antenna where it's needed.

FIG. 5: Note that in the above installation, the mast is supported with guy wires and the fwinlead is twisted to prevent whipping. Whipping ofien causes trouble.

FIG. 6: Route the twinlead away from rain gutters and metallic masses. Use screw and nail standoffs.

FIG. 7: Don't tape the twinlead to the mast. It's a sure way to lose some signal. Standoff shown snaps on.
to the paint and attenuated or passed to ground.
(8) Replace the twinlead every three to five years, or sooner if the insulation starts cracking: this may also be time to replace the antenna itself.

Antenna antics: (1) Keep the antenna as far as practical from obstructions, especially metal. This is particularly important in attic installations, where heating and cooling ductwork may seriously affect antenna efficiency, create ghosts, and disrupt reception in some directions.
(2) Replace the antenna every three to five years, especially in corrosive and fringe areas.
(3) The normal cure for a weak TV signal is to turn up the contrast to compensate. This is like driving a car at 90 mph , and shortens the life of the receiver. It's much wiser, and easier on the eyeballs as well as the receiver, to insure yourself that your antenna installation is providing the best practical signal. This may mean getting a better antenna if the one you have is marginal.

With a little attention to the above considerations, you'll know that your antenna system is operating at peak efficiency, thus allowing the receiver a fighting chance to do its best.

FIG. 8: It may seem wasteful to cut all that lovely iwinlead, fout that coil behind the TV set is robbing your signal.

\title{
OneTransistor Experimental - Tuner
}

By WALTER TEMCOR
 (BOTTOM VIEW)

\section*{Our experimental one-transistor tuner picks up short wave broadcasts. With a broadcast coil it is red hot. Parts cost about \(\$ 5\)}

WANT to experiment with transistor tuners? Here's a good starter. It's a superb performer on broadcast and will pick up short wave. Performance on short wave is limited, but it will get the highpowered Voice of America broadcasts, and on occasion you may pick up Moscow or London. The tuner is presented as a breadboard project that makes experimentation easy and keeps the cost down. The circuit is shown in Fig. 1. The unit is assembled on a miniature perforated board. Figures 2 and 3 show top and bottom views. The clip leads connect to the coil, not shown. The two home-made short wave coils are shown in Fig. 4. The broadcast coil is a store-bought type. You can use any kind of amplifier that you have available in place of the amplifier shown in Fig. 5.

Construction: Use Figs. 1, 2, and 3 for guidance in construction. Most of the connections are made with the component pigtails on the bottom of the perforated board. Note that the frame of tuning capacitor C2 connects to ground. The ground symbol in Fig. 1 refers to common connection to the ground bus and is used to maintain simplicity in the diagram.

R1 is held in place by its connection in the circuit. This is a sensitivity control, and you simply adjust it for best performance. The setting may vary slightly with frequency, but in general it won't have to be readjusted very often.

Fig. 2: Top view of the funer. Note that the potentiometer is supported to the mounting board only by its connections.

Fig. 3: The under-chassis view shows the clip leads for coil connections. Using elip leads facilitates coil changing.

Fig. 4: The coils, wound on ferrite with insuloted wire.

The coils are constructed on pieces of ferrite rod. Use Fig. 4 and the data in the parts list for guidance. To break the ferrite rod clean, measure off the required length, scribe the break point with a shallow hack saw cut on one side, and break the rod at this point, using both hands with one thumb held opposite the saw mark. The length of the ferrite cores is not critical.

You may want to add battery and amplifier input lead extensions to the basic tuner board. The author made these connections directly to the amplifier and picked up battery power from the amplifier which uses a 9 -volt battery. It should be emphasized that any audio amplifier may be used. You can even use the audio amplifier from a table model radio.

Comments: The transistor is a 99 cent-er. The tuning circuit and biasing arrangement is conventional. The tuning circuit consisting of L1 and C2 receives the signal from the antenna through C 1 . The coil connected to the clip leads and the setting of C2 determine the frequency which the tuner will receive. The signal passes through C3 to the base of Q1. C3 isolates the dc bias on the base of Q1 from the tuning circuit ground. Base bias is provided via the resistor combination of R1, R2, and R4. R2 limits the bias to safe ranges, regardless of R1 setting. R5 provides collector bias and is part of the Q1 load. R6 stabilizes Q1 and C4 provides a bypass path for RF. R1 and C5 decouple the tuner from the auxiliary amplifier if you pull power from it, as the author did.

The signal at the collector of Q1 is RF. This signal is fed through C6 to the detector diode D1 and the associated resistors R7 and R8. The diode output is audio. The usual bypass capacitor across the output, is omitted because amplifier input capacitance generally provides the required bypassing like for free.

The antenna requirement is 3 to 10 ft . for
broadcast and about 50 ft . for short wave. You'll also need a ground for short wave.

The amount of experimentation that can be performed is unlimited. You can try various feedback schemes to improve sensitivity. You can experiment with the effects of the value of the collector load resistor R5 if you wish, and you can even try a coil as a load. The setting of R1 for best performance will vary somewhat with the value of R5.

You can change different types of transistors (stick to pnp) to determine effects on performance. You can try lower battery voltages. Again, the setting of R1 will be different.
Experiment with the coils, too. You can decrease turns at top and bottom of the coils, or move turns closer together. You can try the circuit without the cores in the coils, and you can experiment with permeability tuning by moving the cores in and out of the coils.

Fig. 5: The finished unit looks unfinished, but is actually shown hooked up with an amplifier and speoker. Boftery serves both.

\footnotetext{
MATERIALS LIST-ONE.TRANSISTOR EXPERIMENTAL TUNER
Desig.
\(1 / 2-w\) carbon resistors (\(10 \%\) Tolerance)
R3, R6
\(\begin{array}{ll}\text { RS, } & \text { R6 } \\ \text { R8 } & 2.7 k \\ \text { R7 } & 4.7 \% \\ \text { R } & 10 \%\end{array}\)
\(\begin{array}{ll}\text { R7 } & 10 k \\ \text { R2 } & 47 k\end{array}\)
R4 \(\quad 220 \mathrm{k}\)
C1, C6
C3, C4, C5
C
1 meoohm miniature potentiometer (Lafayette VC-38)
C5 . 01 mfd \(75-y\) miniature ceramic capacitor
365 mmf variable capacitor (Lafayette MS-214
D1 1 N60 permanium diode (Raytheon)
\(21 / 16 \times 33 / 8\) miniature perforated board
pointer knob (Lafayette KN-40)
L1 minigator clips (Mueller 30). 3 required
LI (A) broadcast (Lafayette CO-89)
(B) \(2-7 \mathrm{mc}-23\) turns (tapped at 6 th turn) of \(\# 22\) insulated hook-up wire on \(27 / \mathrm{c}^{\prime \prime}\) length of \(.33^{n \prime}\) diameter ferrite rod.
(C) 5.5-15 me-10 turns (tapped at 4th turn) of \#22 insulated hook-up wire on \(2^{\prime \prime}\) length of \(.33^{\prime \prime}\) diameter ferrite rod.
(Lafayette MS.332 is. 33 dia. \(\times 71 / 2^{n}\) long ferrite rod) 9.v battery (Lafayette BA-2)

Amplifier shown in the figures is PK-522 with VC-27 volume control and switch and SK-66 loudspeaker
Parts for this project were obtained from: Lafayette Radio. 111 Jericho Turnpike, Syosset, L. I., N. Y.
}

\section*{"Bleep-Bloop-BlaatPlunk"}

By JOHN D. LENK

FIG. 1. With the lid removed, the wiring is cleorly seen. Notice that the wire loops between the keys ond the copocitors provide odditional flexibility and prevent the wire from breaking under use.

\section*{A one-evening project that will keep the kids occupied for months after, is a toy electronic organ}

WHILE scarcely intended for music lovers, this toy organ has several engaging features. For one thing, it is inexpensive and easy to construct. It employs battery power, making it perfectly safe for children.
If you happen to have one of these toy pianos around, you can make use of a toy which may no longer have any fascination for the children. If you don't have one now, you're not out over \(\$ 2\) for the piano. Should you want to use the parts for something else, you can easily restore the instrument. Al-
though it is not intended as a true musical instrument, this transistor organ will prove to be an amusing and durable toy for the entire family.
It may be necessary to modify the construction data somewhat, since there are a variety of toy pianos on the market. No particular difficulty should be encountered however, if the exact circuitry is used, and construction is essentially like that shown in the illustrations. The only item that will require any special treatment is the selection of capacitor values. The capacitors determine the tones

MATERIALS LIST-TOY ORGAN Desig. Size and Description
-
or notes produced by the corresponding keys. Since run of the mill capacitors are not usually of close tolerance, it may be necessary to connect capacitors in series and parallel until the correct value is obtained.

The first step in construction is to remove the chimes or "noise maker," and the piano top. In the unit shown, the top was split into two sections; the back section being hinged to simulate a grand piano. The other half of the top is glued to the sides, and is provided with a front piece which extends down over the keys. Raise the hinged top, then remove the top by extracting the nails or screws which secure the hinges to the sides. Although it is not necessary to take off the hinged top, removal makes things easier to handle. Using a flat screwdriver or similar tool, carefully pry the top (which holds the chimes) from the sides. It is also possible that the top may be held in place with both nails and glue. Once the top is removed, remove the chimes by loosening the two screws which hold them in place. The screws may be left to cover up the holes. However, for a more decorative effect, glue dressmakers jewels over the empty holes.

Next, remove the staples which hold the wooden hammers to the keys. The hammers

are of no consequence, and get in the way. Place a picture screw in each of the keys. Turn the screws in so that they are approximately the same height and are aligned with the keys (Fig. 3). Drill two holes in each side of the piano as shown in the sketch. Pass the hook-up wire through the holes and the picture screws. Draw the wire tight and secure it by wrapping the ends. Connect and solder the wire loops to each of the picture screws. Secure the capacitors to the bottom of the piano. Solder the top leads of the capacitors together, and the bottom leads to the corresponding wire loops. Make certain that the wire loops have one full loop as shown in Fig. 3.

Mount the remaining parts as shown in the pictorial and schematic wiring diagrams, Figs. 2 and 4. The loudspeaker, transistor and resistor R1 are all mounted with screws or

thumbtacks. Potentiometer R2 requires a hole for its shaft. The battery and transformer T1 are held in place with conventional brackets. If the piano has a one piece top, it will be necessary to cut holes for the loudspeaker. With a hinged top, the loudspeaker should be tilted.

Once the parts are mounted, connect and solder them as shown in the diagram (Fig. 2). Use any suitable hook-up wire. The organ is now ready for a trial. Do not replace the top until the organ is functioning satisfactorily. Rotate the potentiometer shaft which closes switch S1. Depress the extreme right hand key. Adjust the potentiometer until a high pitched tone is audible. In turn, depress each of the keys from right to left noting that the tone or note drops in frequency with each key. As we stated before, the exact capacitor values may not be as shown in the parts list. The values shown in the parts list were chosen to approximate an octave and a half or 12 consecutive notes. In addition, these 12 notes can be set in any range by means of potentiometer R2. By selecting the capacitor values and resetting R2, the 12 consecutive notes can be made to cover any desired scale. If your piano has more or less (often they have only eight) keys, the corresponding number of capacitors must be used.

The organ should now be ready to play simple tunes. It should be noted that by depressing two keys simultaneously, an intermediate tone will be produced.

Remember one point, this is a toy for chil-dren-not a substitute for an expensive quality instrument.

> Portable tape recorders are just fine when it comes to dictating. The trouble begins to brew, however, when the typist must take her hands from the keyboard to operate the machine . . .

\author{
By FORREST H. FRANTZ SR.
}

THOSE little portables look fine when you read your letters into 'em! Madam secretary even looks forward to transcribing from the tape. Then she has to stop the machine so the hands can catch up, and this means pressing a stop button on the recorder. By the time she has done so, the tape has advanced further than she can remember, so she has to rewind a bit, and the trouble starts. You can eliminate this problem by constructing the foot switch and making the simple modifications shown here. The total cost for the entire unit, including the tape recorder is about \(\$ 18\). What's more, the recorder can continue to function as it did before the modification was made!

The recorder used as a base for this project weighs two and one-half pounds and measures \(6 \times 81 / 4 \times 23 / 4 \mathrm{in}\). It contains a four-transistor amplifier and features dual track recording. The latter feature permits recording
of about twenty minutes of dictation on a \(300-\mathrm{ft}\). length of tape. Playback may be through the loudspeaker or through an earphone. The placement of the remote switch in a recorder which differs from this model may be different, but otherwise the modification of most battery-operated recorders up to \(\$ 30\) price range is about the same. The foot switch is the same, of course, regardless of the tape recorder used.

Recorder Modification: The required tape recorder modification is the installation and connection of a closed circuit jack in series with the motor battery lead. The jack is mounted on the top panel of the recorder as shown in Fig. 1. Locate a position for the jack hole which will not interfere with other parts.

Remove the screws holding the recorder in its case and the knurled screw which holds the battery compartment cover. Remove the

FIG. 1: Locate the jack for the foot switch on the front panel. Place it so the foot switch cord will not interfere with normal tape recorder operation.

Desig.
Jack
Plug
Switch
Recorder Door stop 5'

MATERIALS LIST—GREAT DICTATOR
Size and Description
subminiature phone jack MS-282
subminiature phone plug MS-281
normally open momentary contact switch Grayhill 30.1
RK-125AL portable or equivalent
parallel lamp cord
All parts available from Lafayette Radio, 111 Jericho Turnpike, Syosset, L. I., N. Y.
recorder from the case. Mark off the center position for the jack hole. Place a small piece of wood \(3 / 4\) in. thick in the case under the jack position and return the recorder to the case. The small piece of wood will prevent damage to the case when you drill through the top of the recorder. Place a magnet near the spot where the hole is to be drilled (Fig. 2), and drill a \(3 / 32 \mathrm{in}\). hole. The magnet will catch metal chips that might otherwise get

FIG. 4: Left, A rubber door stop is drilled and counter bored to receive the miniature switch. Notice that the plastic plug body is not used; the plug is taped. Right, Underneath wiring is brought through another hole in the rear of the door stop.

FIG. 2: A small magnet, placed near the hole while drilling and reaming, will prevent chips from causing short circuits when the conversion is completed.
into the recording head area. Be careful to keep the magnet away from the recording head. Enlarge the \(3 / 32\) in. hole with a \(3 / 18\) in. drill, then enlarge this hole to the required diameter with a taper reamer as shown in Fig. 2.

An insulating shoulder washer must be used to insulate the jack from the metal recorder base. The diameter of the jack hole required is the diameter of the shoulder on the particular insulating washer which you use. The shoulder washer on hand had a \(5 / 16\) in. shoulder diameter. You can use plain insulating washers if you don't have a shoulder washer. In this case, you'll have to enlarge the hole to slightly larger than \(5 / 18 \mathrm{in}\)., and do a careful centering job to be sure that you have the jack insulated from the metal recorder base.

Remove the metal scraps which have fallen

into the case with the magnet and a brush as you complete each drilling and the reaming operation. Use a brush and your fingers to remove metal scraps from the speaker magnet and frame. Place the insulating shoulder washer on the jack (shoulder up) and insert the combination in the hole. Place a flat insulating washer over the jack bushing on the top of the recorder and fasten the hex nut.

Unsolder the negative 1.5 -volt battery lead at the battery holder. Strip enough insulation off this lead to permit connection to the jack shell and circuit closing contact terminals. Connect a \(10-\mathrm{in}\). length of hook-up wire from the jack tip contact terminal to the negative terminal on the battery holder. The circuit arrangement is shown in Fig. 3. Without a plug in the jack, the recorder operates as though no change had been made. When the foot switch plug is inserted, the battery to motor circuit is broken and the foot switch must be depressed to complete the motor drive circuit.

Check again to be sure that all of the metal scraps from the drilling and reaming operations have been removed from the inside of the case. Replace the 1.5 -volt battery holder and recorder in the case. Fasten the screws. This completes the recorder modification.

Foot Switch Construction: The foot switch consists of a normally off momentary contact switch mounted on a rubber door stop. Use Fig. 4 for guidance in construction.

Drill a \(1 / 4 \mathrm{in}\). hole on the top face of the
door stop and countersink the underside with a pocket knife till you can push the switch through far enough to fasten the hex nut on the switch bushing on the top side. Be careful not to overdo this countersinking operation. The door stop is made of relatively soft rubber, and unless you exercise some care you may go too far with the countersinking.

Before you mount the switch, drill a 3118 -in. hole for the cord on the back side of the door stop. Connect a \(5-\mathrm{ft}\). length of parallel lamp cord to the switch. Connect the other end of the cord to the miniature plug. Don't attempt to use the plug shell, because the lamp cord is too large for it. Simply solder the leads to the plug terminals and cover with enough tape to protect the connections and to form a "handle." This completes construction of the foot switch.

Use: To use the recorder with the foot switch, set the "Play-Record" switch on the recorder to the desired function. Set the "For-ward-Stop-Rewind" switch to forward, and set the volume control to the normal level. Depress the foot switch to make the tape advance; release the foot switch to stop the tape.
Caution: The Forward-Stop-Rewind switch should be set to stop when the recorder is normally not in use. The foot switch simply turns the motor off. The amplifier is connected to the 9 -volt battery whether the foot switch is depressed or released when the "Re-wind-Stop-Forward" switch is left in the forward position.

\section*{Mousełrap Third Hand}
- Need an additional hand to hold small wires and parts while you solder them? To make certain an extra hand is always available when needed, mount the spring mechanism of a mousetrap on the top of your spool of solder as shown. Screw-fasten the mechanism to a tight-fitting cork inserted into the center of the spool.-John A. Comstock.

\section*{Telephone Receiving Plate for Radios} - You can use this receiving plate with a desk telephone instead of an outdoor antenna for your radio to pick up radio signals. This highly efficient device is based
 upon the principle of electrostatic coupling; that is, the radio receiving plate and telephone base act as a capacitor which transfers radio signals picked up by the exterior telephone lines to the leadin and thence to the antenna input of the radio receiver. Make the radio receiving plate by cementing a disc of tinfoil, to which a length of lead-in wire has been attached, between two discs of insulating material, such as heavy cardboard. Place the assembled disc under the base of a desk telephone and connect to the antenna input of the radio receiver. This antenna will pull in distantstations with amazing strength.-J.A.C.

FIG. 1. This preselector will add 20 db of signal af 28 mc , and nearly 30 db at 14 mc . It's a must for the HAM or SWL with a lower-cost receiver!

\title{
You can increase the performance of any 10-15-20-meter receiver with this low-cost Nuvistor Preselector
}

\author{
By JOE A. ROLF, K5JOK
}

ALOW- or medium-priced short wave receiver comes with built-in problems. When the band gets a little sticky, the stations seem to pour in one on top of the other. You sit there with the earphones glued to your head and you try vainly to separate the stations . . . can't be done. At times like
this, even a good bandspread doesn't seem to help too much. The other big problem comes with the old saying "if you can't hear 'em, you can't work 'em." There's nothing quite as frustrating as having a local ham come back to your "CQ-DX" to advise you that some REAL DX is trying to raise you, and that
\begin{tabular}{|c|c|c|}
\hline \multicolumn{2}{|r|}{MATERIALS LIST_PRESELECTOR} & \[
\begin{aligned}
& \text { R2 } \\
& \text { R3 }
\end{aligned}
\] \\
\hline Desig. & Size and Description & R4 \\
\hline C1 & 7 to 102 mmf midget variable capacitor, E. F. Johnson \#157.6, or equivalent & S1 \\
\hline C2 & 4.5 to 25 mmf NPO trimmer, Centralab \#822AZ, or equivalent & Si \\
\hline C3 & 7 to 102 mmf midget variable capacitor, E. F. Johnson \#157-6 or equivalent & T1 \\
\hline C4 & .01 mf 600 y disk ceramic capacitor & \\
\hline C5 & 180 mmf 600 v disk or mica capacitor & Misc: \\
\hline C6 & 60 mf 150 v electrolytic capacitor, Cornell Dubilier BR 60.150 or equivalent & \\
\hline J1 & coax chassis receptacle, 83-1R Amphenol, or equivalent & 1 \\
\hline J2 & coax chass is receptacle, 83-1R Amphenol, or equivalent & 2 \\
\hline L1, L2 & \[
\begin{aligned}
& \mathrm{L} 1-10 \mathrm{~T} \\
& \mathrm{~L} 2-2 \mathrm{~T}
\end{aligned}
\] & 1 \\
\hline & This coil is made from 1 piece of B\&W, or equivalent, & 4 \\
\hline & coil stock. B\&W \#3011. Break coi! 2 turns from one & 4 \\
\hline & end, bend out \(1 / 4\) turn for connection to coil mount- & 1 \\
\hline & ind terminal strip. & 1 \\
\hline L3 & 1 mh RF choke, Nationa! R-50, or equivalent & 1 \\
\hline R1 & \(680 \mathrm{k}, 1 / 2\) watt resistor & \(3^{\prime}\) \\
\hline
\end{tabular}

1 mh RF choke, National R.50, or equivalent \(680 \mathrm{k}, 1 / 2\) watt resister

\footnotetext{
82 ohm, \(1 / 2\) watt resistor
22 ohm, 2 watt resistor
\(2200 \mathrm{ohm}, 1\) watt resistor
3P3T rotary switch, Centralab 1407 switch, P. 270 index or equivalent.
\(500 \mathrm{ma}, 140\) y silicon diode. International Rectifier SD. 500 or equivalent
power transformer, 117 vac primary, 125 vac at 15 ma, 6.3 vac at .6 amp secondary. Stancor PS.8415, or equivalent.

\section*{6CW4 Nuvistor}

\section*{Nuvistor socket}
dial. National MCN, or equivalent
knobs, for function and regeneration controls cabinet. Bud AU-1029 utility cabinet, or equivalent ac power cord, \(6^{\prime}\)
2 lug terminal strips
1 lug terminal strip
\(1 / 10,23 / 4 \times 8^{\prime \prime}\) aluminum sheet
\(1 / 16,11 / 4 \times 2^{\prime \prime}\) Bakelite sheet
RG/174 miniature coax, or equivalent
}
you didn't even hear his call.

Add this preselector, which uses a new Nuvistor, and your \(\$ 50\) receiver will act like one costing three times that much! The total outlay for parts is less than \(\$ 30\).
The terrific increase in receiver sensitivity and gain (20 db increase in signal strength at 28 mc), plus greatly improved image rejection, is made possible by the use of an RCA 6CW4 Nuvistor in a regenerative RF amplifier circuit. The Nuvistor's high gain, low noise characteristics, plus regeneration, permits maximum gain with virtually no increase in noise level. Adjustable regeneration permits peaking for maximum selectivity and image rejection.
The circuit, shown in Fig. 3, is a conventional triode tunedgrid RF amplifier with a neutralizing network consisting of capacitors C2 and C3. Panel mount C3 to control the neutralization of the circuit over its entire 13 to 32 mc range. The output circuit is broad-tuned for simplicity and is peaked for maximum output with the receiver antenna trimmer. A power supply is included, making the preamplifier completely self-contained.

The function switch, S1, not only turns the preselector on, but also switches the circuit in and out of the receiver antenna input. In position 1, the preselector is off and the antenna is connected directly to the receiver for use on the lower frequency bands where most receivers perform satisfactorily without preamplification. In position 2, the amplifier is on, but not connected into the receiver. This is a standby position which permits instant use of the preamplifier when needed. Position 3 connects the preselector to the receiver and is the normal operating position.

Mount the complete unit in a \(4 \times 5 \times 6 \mathrm{in}\). aluminum utility cabinet (Bud AU-1029), Mount the tuning, regeneration, and function controls to the front panel, along with the power

FIG. 2: Looking inside the preselector, you see placement of component parts.

transformer. Mount input and output connectors on the rear panel. The remaining components are dish-mounted on a \(5 \times 23 / 4 \mathrm{in}\). Ushaped chassis of \(1 / 10 \mathrm{in}\). aluminum which is secured to the front panel with 6-32 screws. Insert the 6CW4 tube in its socket between the chassis and the front panel. Mate the shaft of C 1 to the insulated coupling of the dial. Figure 2 illustrates rear panel construction of the finished amplifier.

Mount the tuning capacitor on a separate Bakelite plate which mounts to the chassis. This facilitates capacitor shift alignment with the dial coupling for minimum backlash. See Fig. 4 for complete construction and drilling details.

Make the layout and placement of parts as close as possible to that shown in Fig. 2, otherwise there is the possibility that difficulty will be experienced in neutralizing the completed unit. Mount small components to terminal

FIG. 5. The rear view shows the power card and the two coaxial connectors. One goes to the antenna, the other to the receiver.
strips placed according to directions given in Fig. 4. Make the antenna coupling and tuning coils, L1 and L2, from a 12 turn length of 3011 B \& W coil stock according to instructions given in the parts list, and support them on two terminal strips.

All antenna leads should be RG/174 miniature coax, or similar shielded cable. Cut the input and output leads from S1 long enough (7 to 8 in.) to permit connection to the antenna jacks, J1 and J2, after the front panel has been mounted.

With the front panel in place and connec-
tions made to the antenna jacks, connect the antenna and receiver to their respective terminals and turn the preselector to the on position. Leave the rear panel off until final adjustment of the preselector has been made.

Set the tuning capacitor, C 1 , and regeneration capacitor, C3, to minimum capacity and tune the receiver from 25 to 35 mc . A rough carrier will be heard, indicating that the circuit is oscillating. If absent, adjust C2 in small increments until the carrier is heard. Next, adjust C2 until the circuit drops out of oscillation when the capacity of C3 is increased slightly. The circuit is now properly adjusted for operation and the back panel can be secured.

The preselector tuning range will be from about 13 to 35 mc . Any dial calibration, however, will be relative since the setting of C3 will vary the tuning control setting slightly. The best procedure is to set the tuning capacitor for maximum signal with the regeneration control set at its most sensitive position, which will be just before oscillation. This setting is also the preamplifier's most selective point, and it will be necessary to touch up the tuning if the receiver is moved more than a few kilocycles away from the original setting. With less regeneration, the circuit tunes broad enough to cover several hundred kilocycles without realignment. Some practice will be necessary in adjusting the regeneration to obtain maximum performance.

\section*{ \\ Don't Build This Transistorized Audio Voltmeter!}

\title{
That's right! Don't build it. Unless you need one of the most versatile little instruments that ever graced a work bench. It only costs about \(\$ 15\) in parts and a few hours of labor
}

\author{
By FORREST H. FRANTZ SR.
}

AN AUDIO voltmeter is one of the more necessary instruments in an experimenter's instrument bank. It can be used to make gain, frequency response, and routine ac measurements. It can be used as a signal tracer and as an ac bridge amplifier. To be of maximum utility, the audio voltmeter should have a high impedance input (at least \(1 / 2\) megohm), good frequency response (plus or minus 2 db from 20 to 20,000 cycles), 10 db range steps, and a low fullscale range of .01 volt or less. This transistorized voltmeter comes very close to meeting these requirements.

Construction: The layout for the front panel is shown in Fig. 2. A hole saw or a fly cutter will make the job of cutting the large meter hole easier. Back the panel with a piece of wood during drilling operations.

Cut the range switch shaft to a length of \(3 / 8 \mathrm{in}\). Place the part of the shaft to be discarded in the vise during the sawing operation.

Mount J1, S1, S2, and M. Connect C1, C2, C3, and R1 through R10 (Fig. 3). The resistance values required are unusual, and precision to \(2 \%\) or better is desirable. To meet these requirements and to keep the instru-

ment cost down, select from ordinary carbon \(10 \%\) resistors. Use a bridge or the ohmmeter scale of a VTVM to make the selection. Most of the required values can be selected from standard multiples of 22 and 68 . If necessary, you can resort to series or parallel combinations of resistors to obtain the required values.
The values of R1 and R2 are inconsistent with the other voltage divider resistance values because they were chosen to compensate for circuit loading. The values of C2 and C3 are also inconsistent with theory for frequency compensation of the divider, but this
\begin{tabular}{|c|c|}
\hline Mater & S LIST-TRANSISTORIZED AUDIO VOLTMETER \\
\hline Desig. & Size and Description \\
\hline R1 through R10 & selected \(1 / 2 \cdot w\) carbon resistors-see text R1.610K, R2.290K, R3.68.4K, R4.21.6K, R5 \(6.84 \mathrm{~K}, \mathrm{R} 6.2 .16 \mathrm{~K}\), R7.684 ohms, R8.216 ohms, R9-68.4 ohms, R10. 31.6 ohms \\
\hline R13, R16 & \(1 \mathrm{k}, 1 / 2 \cdot \mathrm{w}, 10 \%\) carbon resistor \\
\hline R17 & \(4.7 \mathrm{~K}, 1 / 2 \cdot \mathrm{w}, 10 \%\) carbon resistor \\
\hline R14 & \(6.8 \mathrm{~K}, 1 / 2 \cdot \mathrm{w}, 10 \%\) carbon resistor \\
\hline R11 & \(680 \mathrm{~K}, 1 / 2\)-w, \(10 \%\) carbon resistor \\
\hline R12 & \(2.7 \mathrm{M}, 1 / 2^{-w, 10 \% ~ c a r b o n ~ r e s i s t o r ~}\) \\
\hline R15 & 100 ohm flange mountiny rheostat (Clarostat series 39-specify resistance) \\
\hline C2, \({ }^{\text {c }}\) & 20 mmf miniature ceramic capacitor (Lafayette CF0179) \\
\hline C4 & 40 mmf (Two 20 mmf in parallel-see C2, C3) \\
\hline C1 & . 1 mfd , 600 v paper capacitor (Aerovox P82922n28) \\
\hline C5, C6 & \(10 \mathrm{mfd}, 10 \mathrm{v}\) miniature electrolytic capacitor (remove from amplifier) \\
\hline C7, \(\mathrm{C8}\) & \(100 \mathrm{mfd}, 6 \mathrm{v}\) miniature electrolytic capacitor, (Lafayette CF-106) \\
\hline \[
\begin{aligned}
& \text { D1, D2, } \\
& \text { D3, D4 }
\end{aligned}
\] & germanium diode (Lafayette SP-148) \\
\hline S1 & 12-position single circuit switch (Mallory 32112J) \\
\hline S2 & togole switch (Lafayette SW-84) \\
\hline Q1 & 2N1379 transistor (Texas Instruments) \\
\hline M & meter, 0.1 ma (Lafayette TM-60) \\
\hline J1 & phone jack (Lafayette MS-441) \\
\hline B & 9 -volt battery (Lafayette BA-2) \\
\hline AMP & 3-transistor amplitier (Lafayette PK.522) \\
\hline & \(21 / 16 \times 33 / 8 \mathrm{in}\). miniature perforated board (Lafayette MS-304) \\
\hline & \(61 / 4 \times 33 / 4 \times 2 \mathrm{in}\). bakelite case (Lafayette MS-216) \\
\hline & panel for above (Lafayette MS.217) \\
\hline
\end{tabular}

Parts available from Lafayette Radio, 111 Jericho Turnpike, Syosset, L. I., N. Y.

FIG. 3: During the early stages of construction, we see the resistors, R1 through R9, mounted on the terminals of the switch.
simple arrangement is better than no compensation at all. It is admittedly a compromise which provides reasonably good compensation on all except the highest voltage ranges. The low frequency response falls off on the 100 - and 300 -volt ranges. On the .01 to 10 volt ranges, frequency response is plus or minus 2 db from about 25 to 25,000 cycles for the overall instrument.

Next construct the emitter follower circuit and feedback control board. The board is purchased cut to the correct size. Use Fig. 4A to locate positions for \(1 / 8 \mathrm{in}\). holes for feedback control (R15) mounting. Then mount and wire R15, R11 through R14, C4 through C6,

FIG. 4A, 4B: The mounting board, front and rear views. Notice the \(1 / 3\)-in. holes for feedback control.

FIG. 5A, 5B: Modifications to the amplifier unit.

You'll get some free parts from the amplifier, and you'll have to add a few. You've already removed two of the 10 mfd . capacitors designated by the dotted lines in Fig. 6A.

Next, move the 30 mfd . capacitor on the bottom side of the amplifier to the position shown in Fig. 5A. This is a physical move only and is not a circuit change.
Remove the 10 K , 25 K , and 60 ohm resistors designated by the dotted lines in Fig. 6 A . Then remove the output transformer.

Add the \(1 \mathrm{~K}, 1 / 2\)-watt resistor (R16) as shown in 6B. The resistor replaces the output transformer as the 2SB176 output transistor de load.

Install the 100 mfd ., 6 -volt emitter bypass capacitors for the input and output stages.

Solder two short wires (size 20 to 24 will
and Q1. Use Figs. 1, 4A, and 4B for guidance. Obtain C5 and C6 from the ready-made PK522 amplifier by removing the capacitors designated in Fig. 6A.

The major portion of the electronics is contained in a ready-made, 3 -transistor amplifier, the Lafayette PK-522. This amplifier costs only \(\$ 3.75\), less than the cost of transistors alone for a build-your-own version. This amplifier is assembled on a printed circuit board and is designed to operate a loudspeaker. A few modifications must be made.
do) to the copper ground strip. Use these wires to attach the amplifier to the emitter follower board (Fig. 7A). Then proceed with the wiring to mate the circuits on the two boards using Figs. 1, 7A, and 7B for reference. The switch leads tie down on the perforated board, and extension leads about 4 in . long must be connected to the tie down point.

Mount this assembly on the meter and complete wiring (Fig. 8). The battery fits between S1 and M under the circuit assembly. Use electrical tape to insulate as required.

FIG. 7 A-B: Top and bottom views of circuit board with amplifier unit in place after modification.

Note that the case of R15 and the frame of S1 are grounded.
The front panel plate for S 1 is a \(21 / 4 \times 21 / 4 \mathrm{in}\). piece of filing card. The angle between switch S1 index marks is \(30^{\circ}\). Fasten the card with rubber cement.
You can prepare a multiple of three scale and a db scale for the meter if you wish, or you can use the graphs of Fig. 9 for conversions. You can add db markings on the switch plate, too, if you wish. The 1 -volt range is 0 db. Each switch step up is 10 db greater, and each switch step down is 10 db less. Thus, the 300 volt range is plus 50 db and the .01 volt range is minus 40 db .
Line the inside of the case with aluminum foil fastened with rubber cement. Provide a piece of stranded wire connected to instrument ground which contacts the foil under one of the corner screws. Use electrical tape if necessary to prevent instrument components from shorting against the foil when the

instrument is slipped into the case.
The input lead should be shielded. The center conductor connects to the phone jack tip and the shield connects to the phone jack outer shell. Provide minigator or alligator clips at the other end for connection to circuits under measurement or test.

\section*{Pert Tester}

\author{
By FRED BLECHMAN
}

ACCORDING to the dictionary, the word "pert" is derived from the Latin "expertus," meaning "ready." The PERT tester certainly fulfills this description; it is "ready" to test almost any common electron tube or transistor, and has been specifically designed to test the elusive electron-ray indicator tubes. In fact, as used here, PERT stands

Fig. 2: The PERT tester uses 13 binding posts and five tube sockets to program test electron ray tubes.

for Programmed Electron Ray Tube. Fiveway binding post terminations for all tube socket and built-in power connections, allow a circuit to be "programmed" with jumpers and external resistors of capacitors.

Electron-ray tubes actually light up in the PERT tester, and the deflection of the lighted portion is varied to insure proper operation of the control element. Most other vacuum tubes may be tested for shorts, filament continuity, cathode emission and grid control. Transistors can be checked for shorts, opens and general operation. PERT may also be used as a powered breadboard, since common voltages are internally supplied.

General Description: The self-contained power supply furnishes 150 volts at up to 10 milliamperes, 6.3 volts ac to 500 milliamperes, and a controllable negative voltage of up to 10 volts. This is all assembled in the case of the tester (Fig. 1). The voltages are carried through a four-conductor cable and connector,
to the front panel, where the tube sockets, meter, potentiometer, pilot light and binding post terminals are located (Fig. 2).

The five tube sockets on the front panel are 6 -pin, 7 -pin miniature, 8 -pin octal, 8 -pin subminiature, and 9-pin noval, which will accommodate all elec-tron-ray tubes and just about any other common tube. Each pin of these sockets is wired to the same-numbered binding post on the panel. Using clip-lead jumpers, any of the voltages may be fed to any pin of the sockets. External resistors, capacitors, etc., as required, may be connected between binding posts. A meter has been included as an "extra." It is not required for electron-ray tube testing, but it is required for testing other tubes and transistors and is handy when using the tester for breadboard experiments.
Assembly of the PERT tester involves more mechanical labor than electrical wiring. The components indicated in the materials list are all readily available; substitutes for these components may be used freely,
 since none are critical.

Do not exceed voltage rating of capacitors and peak inverse voltage ratings of diodes. The wiring placement and routing is not at all critical.

Binding posts do not have to be insulated from the panel, since Bakelite is sturdy, easily cut, and does not require painting; the Bakelite case and panel are less expensive than an aluminum box of the same size.
Holes for the binding posts, terminal strip, handle, pilot light, etc., can easily be made with a small portable electric drill. To make the larger openings for the meter and sockets, drill a starting hole within the area to be cut out, and then use a Tyler Spyral coping saw blade, which can be held in a regular coping
saw frame. These blades, life-savers for making large or odd-shaped holes in wood, plastic or metal, cut in any direction. They are available at most hardware stores or may be ordered directly from Tyler Manufacturing Co., 516 5th Ave., New York 36, N. Y.
Build the power supply portion into the case as in Fig. 1. Position the transformer so that it will not interfere with the sockets, meter or binding posts which will be above it on the front panel. Use a single solderterminal strip to mount and connect the power supply components. Any 4 -pin connector, or two 2-pin connectors, can be used to connect the leads from the power supply to the front panel. This connector is not absolutely neces-

control clockwise) the meter reading should drop, indicating that the grid is trying to cutoff the tube. Indeed, for many tubes, the bias control may completely stop current flow through the tube. This one test checks filament continuity, cathode emission and grid operation simultaneously.

In the cast of multi-section tubes, each section should be tested separately.

To check for internal tube shorts, all you need is a resistor (see Fig. 5). Connect a 47 K ohm \(1 / 2\) watt resistor (R 7) from the 150 -volt binding post to BP 1. Touch a lead from the Ground binding post to BP 2 through BP 9 in turn. Then connect the resistor to BP 2 binding post and repeat, then BP 3, etc., until all the combinations between pins have been tried. The meter should deflect only when the filament or internally connected elements (shown in the tube manual schematic) are brought out to the binding posts under test. If it deflects any other time, this is evidence of a short (even a high resistance short) between the elements under test.
Tubes requiring more than 600 milliamperes or 12 volts for filament operation cannot be checked by the PERT tester. Some

Fig. 9: Back view of the front panel. The resistork shown protect a DM70 from overload during test.
common low-voltage-filament tubes are listed in Table B with the necessary filament voltage dropping resistor indicated. The formula for determining the required resistor for any filament rating under 6.3 volts is also shown in Table B.
Transistor Testing (Fig. 8): The general operation of virtually any signal or low-power transistor can be verified with the tester and a resistor. Connect a \(150-\mathrm{K}\)-ohm, \(1 / 2\)-watt resistor (R8) from the 150 volt binding post to BP 1. Jump ground binding post to BP 3. Insert the leads of the transistor into the subminiature tube socket as follows: emitter to pin 1; base to pin 2; collector to pin 3. (This is for a PNP transistor; for an NPN transistor, reverse collector and emitter). Be sure to count counterclockwise for the pin connections, since you are looking at the front of the tube socket.

Turn on the switch, and the meter should read about 1 milliampere. Now jump BP 2 to BP 3; the meter reading should increase. Move the jumper from BP 2 to BP 1; this time the reading should go down. In the case of an NPN transistor, the opposite is true. The important thing is not how much the meter moves, or even which way, but that it does move, and in a different direction as the base is connected to emitter and collector.

If the meter does not read at all, the transistor is open. If the reading does not change when the base is connected, the transistor is shorted!

Other Uses. The PERT Tester is really an experimenter's delight, since it has so many commonly-required elements built-in. The 150 volts de can be used to 30 milliamperes if the 10 milliampere meter is bypassed.

You may decide to bring the meter terminals to separate binding posts, so the meter can be used by itself. The negative voltage will supply as much as 7 volts at 7 ma , and can be used for powering transistor circuits, using pins 1,2 , and 3 of the subminiature tube socket to mount the transistor. The binding posts BP 1 through BP 9 are not connected together internally, but dead-end at the tube sockets, so they may be used as breadboard terminals.
The 150 volts dc and 6.3 volts ac can be used for powering experimental and "outboard" tube circuits, with the convenience of the tube sockets, and binding posts for connecting the required resistors, capacitors, etc.

In fact, since the front panel is independently connected to the power supply, you can make several front-panel arrangements which plug-in to the basic power supply!

The convenience and versatility of the PERT tester far exceeds the modest cost of the components. Here's a unit you'll find yourself reaching for to handle those odd jobs with a minimum of clipleads, clutter and confusion.

This compact low-cost vibrator power supply employs solid state rectifiers. It converts 6 volts de to 200 volts de for vacuum tube equipment operation in the car or lab

\title{
Vibrator Power Supply
}

\author{
By Walter temcor
}

WANT to operate vacuum tube electronic equipment from an automobile battery? Tube filaments aren't a prob-lem-the battery can carry them directly. Bplus is another thing. The usual approach is a vibrator power supply. This power supply is different, though, in that it uses solid state rectifiers. It will provide 200 volts de at 30 milliamperes. It's compact-overall dimensions are \(31 / 4 \times 41 / 2 \times 5 \mathrm{in}\)., and the cost of parts is low-under \(\$ 10\). Construction is straightforward and can be completed in a few hours. The unit is enclosed in a metal case and is provided with filters to permit interferencefree operation with the auto engine running.
Chassis Preparation: Drill and cut the chassis according to the layout of Fig. 3A. The \(11 / 4 \mathrm{in}\). diameter vibrator socket hole is cut most easily with a hole saw, a fly cutter, or a chassis punch. If none of these are available, drill small holes (about \(1 / 8 \mathrm{in}\). dia.) around the inside of the circumference and

Fig. 1: All parts mount on a small open-end chassis with the on-off switch and the output on one side.
finish the job of cleaning out the hole with a hack saw or cold chisel and a round file.
The transformer cut-out is started by drilling a \(1 / 8 \mathrm{in}\). diameter hole at the two inside corners. Make the lengthwise cuts from the edge of the chassis into these holes with a pair of tin snips. Use a cold chisel or a hack saw to cut the third side. Clean up with a file.

The binding post holes with the "see text" note in Fig. 3A are \(5 / 16 \mathrm{in}\). diameter for the binding posts specified on the parts list. If you use other binding posts, you may require a different diameter. The binding posts must be insulated from the chassis. If you use binding posts that aren't insulated, you'll have to provide shoulder washers.
Assembly and Wiring: Mount the parts on the chassis. Use Figs. 1 and 2 for guidance. There's a small vibrator shell grounding spring which fastens under one of the tube socket screws on the top of the chassis partial-

Fig. 2: The under chassis view shows the location of \(q^{\prime \prime l}\) parts. Be careful to observe proper polarity on the electrolytic capacitors and diodes to avoid damage.

\section*{7 "SHORT" CHECKING}

AFTER GROUNDING BP 2 THRU BP9, MOVE R7 TO BP 2. GROUND B3 THRU 89. MOVE R7 TO BP 3, ETC.

\section*{Desig.}
R1
R2
R3
R4
R5
R6
R7
R8
ClA, B

C2
\(30 \mathrm{mfd}, 15\) y electrolytic capacitor (Allied \#10L520)
D2
M1

T1
S1 (Allied \#64G078)
P1 fused plug (Allied \#52N648)
F1, F2 fuses, \(1 / 4\) amp, 3 AG (Allied \#52B231)
\(\begin{array}{ll}\text { Ll } & \text { NE-2 neon lamp (Allied } \# 52 E 370 \text {) } \\ \text { BP1-8P13 } & 5-\text { way binding posts (Allied } \# 558287 \text {) }\end{array}\)
Case 5 -way binding posts (Allied \#558287)
\(\begin{array}{ll}\text { Case } & 21 / 4 \times 51 / 4 \times 63 / 4^{\prime \prime} \text { Bakelite } \\ \text { Panel } & \text { to fit above case }\end{array}\)
to fit above case
6-pin tube socket (Allied \#40H026)
7-pin miniature tube socket (Allied \(\# 22\) H567)
8 -pin actal socket (Allied \(\# 22\) H579)
7-pin miniature tube socket (Allied \(\#\)
8 -pin actal sockef (Allied \(\# 22 \mathrm{H} 579\))
8-pin subminiature socket
8-pin subminiature
9 -pin noval socket
4 -contact socket (Allied \#40H524)
4 -contact plug (Allied \(\# 40 \mathrm{H} 504\))
line cord (Allied \#50N925)
carrying handle
miscellaneous hardware, wire, etc.
- Parts available from the following: Allied Radio Corp., 100 N. Western Ave., Chicago 80, III.; Lafayette Radio, 111 Jericho Turn. pike, Syosset, L. I., N. Y.; OIson Electronics Co., 260 S . Forge St.,
Altron 8, Ohio.

\section*{Size and Description}

2200 ohm, \(2-w\) resistor (Allied \#1MM070)
100 K ohm, \(1 / 2-w\) resistor (Allied \(\$ 1 \mathrm{MMOOO}\))
10 K ohm, 1-w potentiometer (Allied \(\# 30 \mathrm{M} 306\))
\(220 \mathrm{ohm} 5 \%\) l-w resistor (Allied \#2MM065)
1 megohm \(1 / 2-w\) resistor (Allied \#1MM000)
\(33 \mathrm{~K} 1 / 2-\mathrm{w}\) resist or (Allied \#1Mm000)
47 K ohm \(1 / 2^{-W}\) resistor (Allied \#1M M000)
150 K ohm \(/ \mathrm{s}^{-w}\) resistor (Allied \#1 M MOOO)
\(40 \times 40 \mathrm{mfd}, 150\) v tubular electrolytic capacitor
(Allied \#13L442)
500 ma, 400 V PIV silicon diode (Allied \#1N2070A)
IN34 diode
\(0-10 \mathrm{ma}, 15 / 8-\mathrm{in}\). square meter (Allied \#66F025)
(Arrow Sales Corp., P. O. Box 3007, North Hollywood, Calif.)
110 y at 30 ma., 6.3 volt at .6 a. power transformer
L. l.,

\section*{MATERIALS LIST-PERT TESTER}
\(\qquad\)

Table B
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|c|}{FILAMENT DROPPING RESISTORS} \\
\hline \[
\begin{aligned}
& \text { Tube } \\
& \text { Types }
\end{aligned}
\] & Fil. Volts (Volts) & Fil. Current
(Amps) & \\
\hline \[
\begin{gathered}
\text { IR5, IS5, IT4. } \\
\text { IU4, 1U5 }
\end{gathered}
\] & 1.4 & . 050 & 100 \\
\hline 3A4, 3A5 & 2.8 & . 100 & 30 \\
\hline 3S4, 3V4 & 2.8 & . 050 & 72 M \\
\hline \multicolumn{4}{|c|}{5R4, 5V4. 5X4, 5Y3, 5Y4, 523, 524-Do Not Testl} \\
\hline Rsemis Efil IFIL Mini & \begin{tabular}{l}
Calculate Dr \\
-Efil \\
Ifil \\
istance To \\
ired Filam \\
sired Filam \\
tor Watt R
\end{tabular} & \begin{tabular}{l}
Resistor: \\
(Use \\
Stan \\
ded (Ohms) \\
lage (Volts) \\
rent (Ampere \\
(IFIL) (8.3-
\end{tabular} & Highest alue) \\
\hline
\end{tabular}

If the tube is good, and the "programming" correct, the tube will glow if the tester has been wired correctly! By turning the bias control knob, the shadow angle or bar length will change, indicating proper grid control, and thus completing the functional check of the tube.
In the case of the 1629, which is designed for a twelve-volt filament, the green glow will be weak but easily visible. In the case of the DM70, an internal 220 ohm resistor has been built into the tester to drop the 6.3 filament voltage to the 1.4 volts allowable for the DM70; also, the built-in 1 megohm resistor to pin 8 of the subminiature socket limits the DM70 tube current to a safe value.

The meter readings are not significant when testing electron-ray tubes but do point out the small power consumption of these tubes.

Other Vacuum Tubes (Fig. 6): For testing vacuum tubes other than electron-ray tubes, use the meter and a tube manual. Connect a 33 K ohm \(1 / 2\) watt resistor (R6) to the 150 -volt binding post. This will be the plate load resistor. Jump the free end of this resistor to the binding post that goes to the plate pin of the tube socket, as shown by the tube schematic diagram in the tube manual. If the tube has a screen grid, jump this to the plate binding post. Jump the cathode binding post and one filament binding post to the ground post.

Connect the grid binding posti (if the tube has a grid) to the nesative voltage binding post. Connect the other filament throush a resistor if necerosery (see Table B) to the 6.3 va c binding post. (If the tube has a filament rated at less than 6.3 volts, the resistor of Table B is requiried).

Insert the tube in the proper socket, turn on the switch and wait for flament warmup. The meter will deflect upward to from 2 to \(A\) milliamperes with the bias con.trol fully counter-clockwise , zero bias). As the negative voltage on the grid is increased (bias

Fig. 5: Testing o 6E5. Note the pilot lamp, meter reading, and shadow angle of 6E5 indicator tube.

TESTING A VACUUM TUBE
sary, but allows complete separation of the two parts of the tester, and also allows the use of alternate front panels.

Wire the sockets next by jumping pin 1 of each socket together, and running a wire from the closest socket to binding post 1 (BP 1). Repeat for pins 2, 3, 4, etc. The author used standard color-coded wire; that is, brown for pins 1 , red for pins 2 , orange for pins 3 , etc., to help in wiring and trouble-shooting.

Wire a 220 ohm resistor (R4) directly from BP 5 to subminiature socket pin 5 , and a 1 megohm resistor (R5) from BP 8 to subminiature socket pin 8 (Fig. 3). These resistors insure a gainst damaging a DM70 tunin \({ }^{5}\), indicator tube during test by neglecting to connect these resistors externally. The remaining front p hnel wiring is straight forward and does not require special instruction.

Circuit Description: A mall power transformer (T1) is cunnected to the ac line by SPS'r switch S1, and protected from
"downstream" shorts by a fused plug (P1), containing a \(1 / 4\) ampere fuse for each side of the power line. The isolated 110 volt output is rectified by silicon power diode D1, and filtered by electrolytic capacitors C1A and C1B, and resistor R1. Neon bulb L1, in series with current limiting resistor R2, indicates that the unit is on and that high voltage is available at the 150 -volt binding post (BP 10).
Feed the 6.3 -volt output directly to the ground (BP 11) and 6.3 vac (BP 13) binding posts, for filament operation. The 6.3 volt output of the transformer is also rectified, negative with respect to ground, by diode D2, and filtered by high capacity, low voltage electrolytic capacitor \(\mathbf{C} 2\). The output of this network is applied across potentiometer R3, with the wiper connected to the Neg. volts binding post (BP 12). As the wiper is moved further from ground, more of the negative voltage appears at BP 12.
Place a silicon diode (D3) across the meter terminals in the forward direction. This diode will not conduct unless the meter is subjected to severe overload (such as inadvertent touching of 150 -volt and ground clip leads), at which time the diode bypasses the excessive current to protect the meter movement.

\section*{Tester Operation}
1. Electron-Ray Tubes (Fig. 4): Testing an electron-ray tube with PERT is easier to do than to describe. Connect jumper cords, which may consist of wires with the ends trimmed or alligator clip leads, between the binding posts indicated in Table A for the tube under test. Most tuning indicator tubes in use today are shown. External resistors indicated in Table A are connected between binding posts (see Fig. 4). The tube is then inserted into its mating socket on the panel.

When you turn on S1, the pilot light should glow. As soon as the filament of the tube being tested warms up, the characteristic green or blue glow will be apparent. If no glow is evident after a reasonable time, check the jumper and external resistor connections.
ly visible in Fig. 1. Make this grounding spring by bending a General Cement No. H503-F cable clamp. This spring provides the desired ground connection for the vibrator shell,. and holds the vibrator in place on bumpy roads in a mobile installation. If you don't have the cable clamp mentioned a \(1 / 32\) in. thick piece of metal cut \(3 / 8 \times 1 \mathrm{in}\). long with a \(1 / 8 \mathrm{in}\). hole centered 3110 in . from one end will do the job. In either case, bend to the shape shown in Fig. 3B.
The components can be mounted most quickly in the following order: 1. Vibrator socket, tie-down strips, and vibrator clamp; 2. Fuse extractor post; 3. Binding posts; 4. Transformer. (The remaining components
low. A dc voltmeter connected across the binding posts should indicate about 225 to 250 volts under no-load conditions if everything is OK. If you do not get this indication, or if your fuse blows, recheck the wiring. In most cases incorrect operation results from incorrect wiring rather than from faulty components.

Characteristics: The original model of the power supply provided 245 volts under no load conditions. It took 15 seconds after the switch was turned off for the output voltage to drop to 50 volts. The bleeder resistor R3 causes C3 to discharge when input power is interrupted. Otherwise C3 would hold its charge for a long time. If R3 had a lower re-

fasten later as you wire.) Be sure that the binding posts are insulated from the chassis.

Connect the negative 6 -volt input lead to one fuse post terminal (should be \#12 or \# 14 wire) and connect a lead from the other fuse post to terminal \#1 on the vibrator socket. Connect the transformer leads, the diodes (watch the polarity!), the resistors, and the capacitors (watch polarity!). Solder the connections. Connect switch S1 last and fasten it on the chassis. Use \#12 or \#14 wire for the positive battery lead.

Insert the vibrator and the fuse. Connect to a 6 -volt battery or a battery eliminator to check operation. The vibrator should hum smoothly and the hum should be relatively
sistance C3 would discharge faster, but there would be less output current available.

Under a 30 ma load the output voltage was about 205 volts on the original model. The capacitors discharged to a few volts in less than a second after the switch was turned off with the load connected. Under a 35 ma load the output voltage drops to about 175 volts.
Variations: The ripple' voltage under a current drain of 20 ma is about 0.2 -volt RMS. This is sufficiently low ripple for most applications. If better filtering is required for a critical application, replace the 8 mfd . capacitor (C2) with a 40 mfd ., 450 -volt capacitor.
If this power supply is to be used for mobile operation with the automobile engine
running, it should be housed in a metal case. You'll also have to ground one of the 6 -volt input leads. Determine the polarity of the ground on your automobile electrical system. You can check for a metal braid connection from battery to auto chassis. If plus is grounded, ground the 6 -volt plus lead on your power supply. If minus is grounded on your car, ground the 6 -volt minus lead on the power supply.
If your car is equipped with an auto radio, it will be equipped with noise suppression devices. If it isn't, you'll have to do some work on the car if you wish to use this power supply with radio equipment. That's a whole subject in itself beyond the scope of this article.
Even when an automobile has had noise
\begin{tabular}{|c|c|}
\hline Desig. & \begin{tabular}{l}
MATERIALS LIST-VIBRATOR POWER SUPPLY \\
Size and Description
\end{tabular} \\
\hline R1, R2 & 100 ohm, 1/2.w carhon resistor, \(10 \%\) \\
\hline R3 & \(100 \mathrm{~K}, 1\)-w carbon resistor, \(10 \%\) \\
\hline C1 & . \(01 \mathrm{mfd}, 1600 \cdot \mathrm{v}\) tubular capacitor (Lafayette C.527), \\
\hline C2 & \(8 \mathrm{mfd}, 450 \cdot v\) tubular electrolytic capacitor (Lafayétte C.113) \\
\hline C3 & \(40 \mathrm{mfd}, 450 \cdot \mathrm{v}\) tubular electrolytic capacitor (Lafayette C.131) \\
\hline D1, 02 & silicon rectifier (Lafayette SP.196) \\
\hline V1 & 4 prong 6-v vibrator (Lafayette MS.14) \\
\hline T1 & vibrator power transformer (Lafayette TR-77) \\
\hline S1 & SPST toople switch (Lafayette SW.21) \\
\hline \multirow[t]{6}{*}{F1} & 4 amp fuse (Lafayette EL.231) fuse extractor post (Lafayette EL.370) \\
\hline & 4 prong socket (Lafayette CM-91) \\
\hline & two tie down strips, 2 lug (2 req. Lafayette MS-232) \\
\hline & 5 -way binding posts (2 req. Lafayette PJ-21, specify 1 red and 1 black) \\
\hline & Two \(31 / 4 \times 41 / 2\) in. aluminum open end chassis (Premier ACH-1352) \\
\hline & \begin{tabular}{l}
Parts for this project may be obtained from: \\
Lafayette Radio Co., 111 Jericho Turnpike, Syosset,
\end{tabular} \\
\hline
\end{tabular}

suppression treatment, you may have to add a 6 -volt line filter in the vibrator power supply. Figure 5 shows the circuit of a filter which will tend to keep noise from entering into the auto electrical system. The filter should be close to the point where the above ground 6 -volt lead enters the power supply.
How It Works: The dc battery voltage is converted to pulsating dc by the vibrator. When battery voltage is applied, current passes through the plus lead through the transformer primary into pin 2 of the vibrator, through the electromagnet coil, back to the battery. This causes the armature to be attracted. Current flow to pin 2 of the vibrator is interrupted, and current flow through pin 3 is initiated. When the current flow through the electromagnet is interrupted a spring acts on the armature to return it to its rest position, and the cycle is repeated. Thus, a pulsating current is applied to the transformer.
The transformer converts the pulsating do current to ac and steps the voltage up in the secondary. Diodes D1 and D2 are connected

in a full-wave rectifier circuit and convert the transformer secondary voltage into pulsating dc again. R1, C2, R2, and C3 filter the pulsating dc and reduce the ripple voltage to the value cited earlier. C1 is a buffer capacitor which reduces vibrator switching transients. R3 is a bleeder resistor which is provided as a safety measure.

\section*{Anti-Snooper Alarm}

If a marauder is quiet as a mouse,
he won't get past this one! It uses
a mouse-trap to trigger a bell!

\author{
By WILLIAM L. ROPER
}

RUSSELL HALL, a 13-year-old Chino, Calif., boy, invented this simple device when he was 12. It has proved very successful in safeguarding his electronic gadgets from his two younger brothers. It is easy to make.

When a snooper brushes against a black silk thread stretched across the room or in front of a work-bench, it will start a bell ringing. The unexpected noise usually sends the would-be marauder scampering.

All you need to construct your own alarm are: a door bell, a dry cell of sufficient voltage to ring the bell (a 5 -volt dry cell will do it), an ordinary mouse-trap, a small piece of copper about the size of a penny, a 6 -foot length of black silk thread, and about 12 ft . of insulated door bell wire. The drawing explains the circuit.

The piece of copper is fastened with a thumb tack or small nail to the upper surface of the mouse-trap, so that when the trap is sprung, the wire of the trap completes the circuit. Only a slight tug at the silk thread is needed to trip the trap, completing the cir-
cuit and setting off the alarm. The thread, which is invisible at night and barely visible during daylight hours, can be stretched across a window or doorway, and the bell placed several feet away, or even next door, if you have enough connecting wire.

Globe Radio
Housed in an attractive dime store case, this radio is a handsome desk accessory

\author{
By HOMER L. DAVIDSON
}

LESS than \(\$ 12\) and a little work will reward you with a novel radio. The set uses an interesting circuit quirk that you'll want to know about, whether you plan to build or not.

How It Works: The RF coil is a Vari-loopstick with a micrometer adjustment screw. This coil was modified by winding 50 turns of No. 36 enameled wire over the original winding and to keep the coil intact, two layers of Scotch tape were applied. A 365 mfd variable capacitor is used to tune through the broadcast band. Fasten a hank of antenna wire to C2 and lay it around the room, clip it to the bed springs, or fasten it to a metal window screen. If a long outside antenna is used distant stations can also be picked up.

A fixed detector rectifies the RF signal and

2N107, stituted instead of the 2 N 107 , or any low priced audio transistor can be used in this stage of amplification.

A volume control is incorporated in the final input circuit to control local station volume. The 117 L 7 GT vacuum tube is used to amplify the audio signal. The output of the 117L7GT tube has sufficient volume to drive the \(21 / 2 \mathrm{in}\). PM speaker and also has a half-wave rectifier in one envelope. A three or four in. speaker can be employed in this receiver if a larger housing is used.

A half-wave rectifier converts the line voltage to de voltage. The de filter network consists of a \(50 \times 30 \mathrm{mfd}\). 150 -volt electrolytic capacitor and an 1800 ohm 1 watt resistor. There is no hum noticeable in this type of filtering network. Take a piece of \(1 / 4 \times 21 / 2 \times\) \(31 / 8\) in. plastic and drill all holes for mounting

\begin{tabular}{|c|c|}
\hline & MATERIALS LIST-GLOBE RADIO \\
\hline Desig. & Size and Description \\
\hline Cl & 365 mfd single gang variable capacitor \\
\hline C2 & . 01 mfd 400-v paper capacitor \\
\hline C3 & \(50 \mathrm{mfd} 50-\mathrm{v}\) electrolytic capacitor \\
\hline C4.5 & \(50 \times 30 \mathrm{mfd} 150-\mathrm{v}\) electrolytic capacitor \\
\hline R1 & 500 K potentiometer with spst switch \\
\hline R2 & 150 ohm 1/2-w carbon resistor \\
\hline R3-R4 & 1.8K 1-w carbon resistor \\
\hline R5 & 100K \(1 / 2\)-w carbon resistor \\
\hline T1 & A4723 transformer (Stancor) \\
\hline T2 & A3822 transformer (Stancor) \\
\hline L1 & 50 turns No. 36 enameled wire over L2. Hold in place with Scotch tape \\
\hline L2 & Vari-Loopstick \\
\hline 01 & 1N64 fixed crystal \\
\hline Q1 & 2N107, CK722, or similar transistor \\
\hline V1 & \begin{tabular}{l}
117L7GT tube \\
Miscelaneous tube sockets, plastic chassis, טlobe, speaker
\end{tabular} \\
\hline
\end{tabular}
the various parts. Mount all parts on the plastic base except the tuning capacitor and volume control.

Wire the components circuit (see Fig. 2). The small transistor and fixed crystal are soldered directly to the circuit and extreme care must be exercised so that too much heat will not damage these units. There are no critical wiring problems or methods used except to make all leads short and direct as possible. A pictorial diagram is shown in Fig. 4.

Be sure and check the small radio wiring diagram (Figs. 2 and 4) before firing up the unit. Do not mount the radio chassis into the globe before testing it. Turn the volume control and switch on. Watch for the 117L7GT tube to light up and turn the variable tuning capacitor until stations are heard. Tune in a local broadcast station with the volume
control full on. Now lower the volume to normal. Adjust the ferr-te coil for louder volume on the weaker stations. The stations should tune in all over the broadcast band.

Testing: If there is no sound from the small speaker touch the point of a screw driver to pin 4 of the output stage. A hum should be

heard. If not, check the voltage from pin 1 of the rectifier section. About 120 volts should be noted at this point. Check the voltage on the plate of the output tube. The trouble can be found by using the voltage and resistance check method. If a hum is heard on pin 4 proceed to the base of the transistor. A louder hum will be heard if working properly. The volume control must be full on. A positive \(41 / 2\) volts will be found on the emitter of the 1st audio stage. When clipping the antenna wire to a metal object a definite click or scratching noise is heard.

After the radio is working properly, mount the plastic radio chassis into the small globe. (Fig. 5). Use small angle brackets on each corner to hold the chassis to the contour of the globe. Bend the brackets down along the slanting sides. A large rubber grommet is placed around the volume control and variable capacitor where they protrude. These rubber grommets isolate the chassis from the operator. Use masking tape over the transformers if they tend to touch the metal sides.

If the chassis is placed in the center of the globe, every part is isolated from the globe container.
For the speaker opening, a few alternate small and larger holes were drilled to let the music out of the container. Place a couple of attractive white knobs on the controls and the project is finished. The world globe was purchased at a dime store for 59 cents. If a plastic one is available, use this.

The radio is built on a plastic sheet which, when complete, fits into a dime-store globe.

\title{
Want to eliminate some of the hum from your battery eliminator? Try this handy
}

WHEN you get down to servicing an automobile radio, you run into the problem of where to get the voltage to power the thing. After lugging the battery from the car to the workbench a few times, you soon learn that a battery eliminator can save much work and many steps.

You'll find, however, that the ripple voltage present in most battery eliminators introduces an annoying hum during test. While the automobile radio has built-in filtering and noise suppression, the transistorized radio does not. As a result, you can't hear the signal for the noise. If you can reduce the ripple by a factor of 100 , the battery eliminator can be made to serve better for car radios, and very well indeed for testing the little transistor jobs, as well as numerous other demanding applications.

Examine the circuit (Fig. 5). It is a threestage cascade current amplifier which permits you to use small capacity, large resistance (low cost) filter-

\section*{Filiter Tip}

\author{
By FORREST H. FRANTZ SR.
}
ing of the small dc current input required by the amplifier. Without the amplifier, resist-ance-capacitance filtering would be impossible, as a resistance of even one ohm would produce a voltage drop of 10 volts in a 10 ampere circuit.

The input filter and volfage divider C1, R1, and R 2 reduce the input dc voltage to ninetenths of the applied value. However, the ac ripple is reduced to about one-half percent of the applied ripple. The input current requirement of transistor Q1 is small, even under heavy current demand conditions on the transistorized filter. Q1 functions as an emitter follower and provides the filtered and amplified current for Q2. Q2, in turn, ampli-

Looking af the bottom of the wired chassis, the locations of the various components is clearly seen. Natice the lang transistor leads and the wide spacing of components to permit easier and more rapid cooling below the main deck.
fies the filtered current to meet the higher current demand imposed by the output stage, which consists of Q3 and Q4 connected in parallel. R3, R4 and R5 serve as current returns under no-load conditions.

The filter requires no additional controls or front panel modifications. It will handle up to four amperes continuous and to eight amperes intermittent without additional heat-sinking. You can

Top view shows how the power transistors, Q2, Q3, and Q4 are mounted. No extra controls are required in normal use. increase the current handling of this unit by bolting a \(1 / 4 \times 11 / 2 \times 4\)-in. piece of metal to the top edge of the filter chassis.

Drill and punch the chassis as shown in Fig. 2. Remove all burrs and chips. Mount the components as in Figs. 1 and 3. Follow the schematic diagram (Fig. 5) to complete the wiring of the filter.

Mount the filter chassis in the battery eliminator, using insulating shoulder washers, and be sure to use insulating tape liberally wherever a possible short circuit might occur. The completed installation is shown in Fig. 4.

The battery eliminator wiring must be al-

MATERIALS LIST-FILTER TIP
\begin{tabular}{|c|c|}
\hline Desig. & Size and Description \\
\hline R1 & 47K \(1 / 2\)-w carbon resistor \\
\hline R2 & \(47001 / 2 \cdot w\) carbon resistor \\
\hline R3 & \(68001 / 2 \cdot w\) carbon resistor \\
\hline R4 & 1K 1/2-w carbon resistor \\
\hline R5 & 270 ohm, 1/2w carbon resistor \\
\hline C1 & \(160 \mathrm{mfd}, 25-\mathrm{v}\) miniature electrolytic capacitor \\
\hline Q1 & 2N1379 transistor (Texas Instruments) \\
\hline Q2 & SP-243 transistor (Lafayette Radio) \\
\hline Q3, Q4 & SP-244 transistor (Lafayette Radio) \\
\hline Chassis & \(11 / 2 \times 33 / 4 \times 41 / 8 \mathrm{in}\). Aluminum. (Premier ACH-1354) five-lug soldering strio \\
\hline
\end{tabular}

The filter installed in a battery eliminator.
tered to connect the eliminator output to the filter input. The meters and eliminator terminals must be properly wired to the filter output.
The filter was tested at six volts, eight amperes and at twelve volts, five amperes for half-hour periods without additional heatsinking.

\section*{Basic Bugging Ouffit}

If it is necessary for two people to listen to one telephone conversation, the bugging outfit provides both legal pickup and amplification for the listener's ear.

\section*{Miniature fransistor pocket amplifier has many interesting applications}

\author{
By JAMES A. McROBERTS
}
versation. And the amplification greatly assists understanding of weak sound from a distant telephone. In most states induction pickup bugging your own phone is entirely legal; however, check the local law. Any recording may require a high pitched 'beep' to inform the distant talker that a record is being made of his conversation.

Modification of the basic pickup amplifier enables it to do many other things while remaining un-

ORIGINALLY, the basic amplifier described here was intended to "bug" your own telephone without tapping the wires. Loudspeaker operation permits several persons to hear both sides of the con-

impaired as a phone pickup amplifier. An input jack and tip jack output allows various accessories to be connected. Details of these changes follow discussion of the various services this unit can perform now.

Telephone Pickup. For its original purpose, install a miniature plug on the end of the induction pickup cable. Shield is soldered to the outer sleeve lug of the plug to mate with body or ground portion of the input jack on the amplifier.

Speaker is equipped with phone tips for insertion into the tip jacks. A miniature earphone (6 ohm impedance) can be substituted for the speaker if desired. Then the speaker can be used for group listening as in a business conference. The earphone enables the user to take advantage of the gain of the amplifier if the distant sound is too weak for private listening, and to do so without disturbing others nearby. Figure 4 shows the device ready to work with earphone output and phone pickup. Complete instructions for attachment of the pickup comes with that component.

Microphone Bug. Even more useful is the microphone input. A Shure MC-11 mike with shielded cable is equipped with a plug for the

FIG. 1: House the amplifier in a small convenient box, such as a plastic meter case. Mounting the battery outboord as shown, permits easy change ing when necessary. Speaker plugs in jacks.

FIG. 2: For use with the telephone, use a mating plug on the input cord and connect the earphone to the output jacks. Place pickup under phone and you have a second earpiece for a third party.
input. A variety of outputs are possible, viz., speaker, earphone, tape recorder. The earphone or speaker can be plugged in as with phone pickup duty. So too for a tape recorder if it has a low impedance input for connection to a radio or TV. If the tape recorder input is only high impedance, a matching transformer to the output (3.2 to 6 ohms) is required.

Figure 6 shows still another useful accessory. Fifty feet of phono wire is spooled onto its shipping reel and is equipped with a plug on one end and a jack on the other. The entire 50 ft . can be unrolled or as much as you please. The mike, pickup, or other input device (1000 ohm impedance or near thereto) plugs into the jack while the plug mates with the jack on the amplifier. This enables distant placement of the microphone. A second spool of another 50 ft . may be added if some loss of volume is tolerable. Now some uses will be described in more detail:
1. Hearing Aid. The short mike cable version (Fig. 5) with an earphone makes a very powerful and lightweight hearing aid. It is useful for the hard of hearing and also for those with normal hearing. A case in point is the detective, (and sometimes crooks too). A rubber tube may be fitted over the microphone to allow pickup in only a rather narrow beam-the mike "shield" (Fig. 5). One can pick up conversation at quite a distance with such a gimmick while materially reducing other sound and noise to either side of the shield's restricted cone of acceptance.
In this model, the shield was made from the mouthpiece of a war surplus microphone. A piece of foam rubber was cut circular in shape to fit the narrow opening of the flared mouthpiece. A cap from the junkbox of aluminum slipped over the same end outside the rubber cylinder to make it more rigid. The microphone is pressed into this cup-like

FIG. 3: You can mount a microphone facing into any parabolic reflector, such as a hash gun. Also lamp shades, or auto headlamp reflectors from old cars. Result is a very highly directional effect for long distance use.
shield and held there by friction. When that use is finished, the mike is removed from the shield which goes into one of the detective's voluminous pockets-they carry almost anything! The mike is now free for another job and the shield is handy if needed.

A different type of microphone was once placed at the focus of a photo flash reflector to pick up sound across a rather wide street (Fig. 7). A parabolic reflector such as an auto headlamp reflector of the prewar style has been used similarly with a mounting on a camera tripod equipped with a pan head. The mike is at the focus of the reflector in both cases. Point the open face of the reflector at source of sound.
2. As a "bug," the device can provide fun at parties in addition to its obvious use to

FIG. 4: Mount the microphene unit to a surplus telephone shield, and plug in. While the directional effects are not as good over great distances os the refector, side noise is cut down considerably.
fed into a recorder with a matching transformer. The output of the recorder may be monitored with a headset or an earphone. Details of this monitoring will come with the instructions for the machine or may be secured from its maker.

Mind Reading Act. Amateur and professional magicians employ a somewhatly similar system which may be set up at your next gala party. The magician has a 'brain wave' on his stand on the stage. He connects a headset or earphone into it. Actually, he plugs into the output of such an amplifier as the 'bug' described here. An assistant talks to a spectator in the audience at a definite seat. Needless to say, the microphone is at the seat. And after a little hocus pocus the magician reads the mind of his assistant, or the unwitting stooge

FIG. 5: Connect a plug to one end of a \(25-\mathrm{ff}\). length of phono card and a plug to the other end. Keep the spool with your amplifier for use when long runs are needed between the mike and amplifier units.
invade somebody's privacy. In these types of service, the microphone cable is unrolled and the microphone placed where it is easy to pick up the wanted sound and avoid extraneous sound and noise.

One such application is at a bird's nest. The microphone may be left there and the amplifier connected at will. One may connect the output to the input of a tape recorder through a matching transformer (3.2 ohms to the input impedance specified by the recorder manufacturer.) Similarly, the hearing aid and all the other applications can be
at the designated seat. A similar arrangement is to let the mike remain hidden near a comfortable chair and eavesdrop. For this work the microphone cable is unrolled from its spool as required. Now if a very long run of wiring is necessary, one should use a low impedance line and a matching transformer. The input impedance of this amplifier is 1000 ohms. Twisted or parallel electric light wire may be used for such a low impedance run of wire. Do not run close to electric lines or excessive hum will be developed. Lightly twisted enamel wire may be used if it is desired to make the wiring inconspicuous. Do not overtwist else a short circuit may be made due to scraping off the wire's insulating enamel.
3. Random pickup services such as a remote baby sitter is still another use to which this unit can be put. Here the microphone cable may be tacked in place along a wall taking care not to short the inner conductor to the shield. Keep away from light and phone wires. On long runs, less hum and similar interference may be developed if the outer shield of the micropione, the microphone cable, or one of the battery leads is

MATERIALS LIST-BASIC BUG OUTFIT
Amt. Req.
transistorized amplifier
miniature Jack, \#MS-282
tip jacks, \#P.J-23
battery \#BA. 2
matching transformer \#TR-120
volume control with switch \#VC-28
loud speaker to suit requirements
assorted cabinet, hardware, etc., as required
All materials available from Lafayette Radio Electronics, Co., 111 dericho Turnpike, Syossett, N. Y.
grounded.
As a baby sitter, a larger speaker should be used. A 6 in. size is preferable. Even the slightest whimper of Junior in his crib can be heard if the volume is turned up sufficiently. And battery life is long when there is little sound being amplified. We can add the burglar alarm feature of the device as a finishing touch to the baby sitting angle. Here the unit may be turned on from time to time, or left on. For continuous operation, in any of these duties the large standard dry cells may be hooked in series instead of the smaller battery only intended for portable operation. Use \(6-11 / 2\)-volt batteries. Connect the final + and - as for the smaller battery. Here one can bring out longer leads. Or put on a pair of battery plugs onto the leads from the big battery supply so the unit can be disconnected for a hunting or fishing trip as a sort of night alarm for unusual loud noise, using the small battery.
4. A low power musical instrument amplifier is still a further use for this tiny amplifier. It has ample power for small amateur performances with a guitar, violin, harmonica, zither, etc., but is not suitable for large gatherings in public halls etc.

Here employ a larger PM speaker (6-9 in.) in a baffle box. Use a contact microphone suitable to the instrument. Ground one side of the microphone by a jumper to the grounded side of the input plug.

With these specific uses described, we turn to the modifications of the basic amplifier. For specific problems the reader can choose his own input with an appropriate matching transformer, and use his own output with a similar matching transformer to properly match impedances.
5. As an electrical equipment detective use the telephone pickup and either speaker or earphone output. A low impedance matching headset can also be used for the output; it will block nearby noises.

Any irregularity in an electrical motor may be discovered by putting the pickup near the motor and exploring. An ac induction motor should give a smooth uniform hum sound in the earphone (speaker). A dc commutator type will yield a steady whine from the com-mutator-brush makes and breaks. After listening to a few good motors, the commercial or home repairman can quickly spot a defective unit. And he can obtain an idea of the trouble too. By passing a subnormal current through the motor, he can troubleshoot it after gaining some experience with use of the instrument. A few turns of a shorted motor

FIG. 6: The parts placement is easy to see. When the amplifier is completely installed, the cover fits over the case so the volume control shaft is run through its matching hale. Then replace the knob.

An electric motor generates a spark, which is in essence, a radio signal. The pickup acts as a probe permitting you to hear the sound of the motor. In a short lime, you learn the sound of a healthy motor, and after some practice, can even detect symptoms!
coil can be detected with this instrument otherwise found only with difficulty. (Fig. 7)

Faulty operation of a fluorescent light or starter can be traced with the phone pickup. Reliable indication is given long before the symptom becomes evident visually. Similarly, buried ac wiring can be found if not encased in metal such as a conduit or BX.

While the illustrations show the Lafayette KT-95 kit, any transistorized amplifier can be made to serve equally as well.

The basic modifications required in this project do not affect the amplifier circuit at all. Rather, they concern themselves with making sure the input and output plugs mate and that the cabinet is big enough to house the amplifier, its battery and the speaker.

\section*{Build the "Ioneer"}

You can enjoy a negative high ion concentration by building this simple device. Then decide for yourself the possible benefits.

The method of ion generation used in this project is based on an idea proposed by General Electric. Rays from a sterilizer lamp are bounced off an aluminum shield. These lamps, ordinarily used in electric dryers and deodorizers are available at many appliance repair shops.

This bulb must be used in series with a 40 -watt light bulb. If you install the bulb as shown, the heat from the light bulb will cause a chimney effect through the shield, and diffuse the ions more effectively. In any case, as the sterilizer lamp uses ultra-violet rays, it is a good idea not to look directly

into the blue light from this lamp. The shield of aluminum also acts as a light shield.

Use insulated sockets for the lamps. Mount the 40 -watt bulb socket on a \(1 \times 6 \mathrm{in}\). board, one ft. long. The socket for the sterilizer lamp is supported on two six-in. lengths of No. 14 solid copper wire, o末 the type used in house wiring.

Make the Beer Can Column by cutting both ends from a beer can. Crinkle two sheets of aluminum foil, \(4 \times 5 \mathrm{in}\). Smooth them slightly and place them inside the can, dressing them to the contours of the can. The exterior of the can can then be painted, wrapped, or treated as you see fit.

Mount the unit on a smooth wall in an area where good air circulation will be assured. For convenience, you might want to add an in-line cord switch to turn the unit on and off. A snapon light shield will prevent a glare from the 40-watt bulb.

Try the system on your friends, by inviting them to your home, but not revealing the purpose of the device. Notice their mood upon entering the room, anc again, after they've been in it for a while. Some of the reactions may startle you! You can explain the experiment afterward, when they begin to ask why the effects they feel have taken place at all. - Jack Allison.

\section*{Tape Tube Handle}
- Pulling miniature and sub-miniature tubes from their sockets in crowded electronics hookups will be much easier if you provide each tube with a handle. Use a strip of masking or Mystik tape looped over the top
 of the tube and secured around the bottom with another strip of tape. Don't use tape on tubes that heat up excessively, because of the possible danger of fire due to tape igniting. Never use plastic tape for this purpose as it ignites easily.

Color-Code Transistor Leads
- Accidentally connecting the leads of a transistor to the wrong terminals in a circuit may ruin it. Prevent this costly mistake by colorcoding each wire lead with a small tab of colored plastic gift-wrapping tape. Use red (hot) tape for the emitter, blue for the base, and green (cold) for the collector.-
 J. A. C.

\section*{Underwater Artillery Shoots Phone Conversations}

DRESSED in surgeon's garb to assure complete cleanliness, technicians make final adjustments on new submarine telephone repeaters that "shoot" conversations across the bed of the Pacific Ocean. Built by a British affiliate of International Telephone and Telegraph Corp., these gold plated "guns" am-
plify signals as they become weaker in traveling along COMPAC, a transpacific cable that will lie on the bed of the ocean between Australia and Canada. The cable will be capable of carrying up to 80 two-way telephone calls simultaneously and will supplement the inter-ference-prone radio links presently in use.

\section*{Bat Radar Helps Blind "See"}

A"BAT RADAR" device which, when fully developed, may allow a blind man to throw away his cane has been produced by Lockheed Missiles \& Space Co. scientists. In its present, preliminary form, the instrument enables a blindfolded person to detect and make his way around such objects as filing cabinets, cars, trees, and other people. He can walk toward a wall, locate an open door and pass through it without seeing or touching the doorway. With certain refinements, scientists are convinced that the instrument will "see" much smaller objects in a wide vertical range. As with a bat's radar system, the device emits supersonic sounds which bounce off objects ahead and return to be converted into electrical energy which is transmitted to the operator's earphones. Space age technology can easily reduce the size once a practical use is developed.

\title{
Three-Transistor AM Broadcast Tuner
}

\author{
By ART TRAUFFER
}

FOR those who want a fully assembled and wired AM tuner, the Lafayette PK-633 three-transistor AM tuner chassis (Fig. 1) fills the bill nicely. This little tuner is sensitive, selective, and it pulls in stations with surprising clarity. When mounted in a homemade wood box, and used with high-impedance magnetic or crystal earphones (Fig. 2), this tuner is fine for late evening listening, for use as a child's private radio, or for use in hospitals, etc. It also makes a good AM tuner for your hi-fi outfit (Fig. 3).

Figure 4 shows how to make the simple wood box to house the tuner chassis and 9 volt battery. The writer's box measures \(21 / 8 \times 31 / 2 \times 55 / 8 \mathrm{in}\). and was put together with wood glue and small wire nails, using \(1 / 4-\mathrm{in}\).
thick hardwood with the exception of the top and front panel which is \(1 / 8-\mathrm{in}\). composition board. The outside of the box was sanded smooth, and the corners and edges were rounded off. The wood was given two coats of gray enamel. If you can find a plastic box about this size, use it, but do not use a metal box as it will shield the ferrite antenna coil and reduce the efficiency of the tuner.

Figure 5 shows how the tuner is mounted and wired in the wood box. A \(1 / 2\)-in. diameter hole in the front panel passes the variable capacitor shaft. Four round-head wood screws \(1 / 4\)-in long, with washers, hold the chassis in the box. Cut a rectangular opening and drill two holes for mounting the slide switch. The two phone-tip jacks are mounted

Fig. 1: The Lafayette PK-633 subminiature AM broadcast funer is the heart of the unit. You only need box and phones.

Fig. 2: The unit can be used either with earphones directly, or with any amplifier to drive a good-sized loudspeaker system.
in \(1 / 4 \mathrm{in}\). holes in the rear panel. The ninevolt transistor battery is clamped securely by means of a \(1 / 2 \times 11 / 4-\mathrm{in}\). brass angle bracket screw-fastened to the bottom of the box, as shown. Solder the blue and the black AF output leads to the two phone-tip jacks. The red lead (+) on a snap-on battery connector is foldered to the red (+) battery lead on the chassis, and the black (-) lead on the connector is soldered to one lug on the slide switch. The black (-) battery lead on the chassis is soldered to the remaining lug on the slide switch.

A vernier drive, making friction contact with the edge of the tuning dial is a convenience for fine tuning. The simple assembly is shown in Figs. 5 and 6. A banana plug serves as a bearing sleeve for the vernier shaft. Obtain a \(11 / 2-\mathrm{in}\). length of metal or plastic rod the right diameter to fit snugly in the banana jack. Push a soft rubber grommet with tapering sides, firmly onto the rod as shown. A Lafayette MS-185 miniature knob goes on the business end of the rod. The banana jack bearing is mounted in a \(1 / 4-\mathrm{in}\). diameter hole, in the correct position in relation to the edge of the tuning dial, as shown in Figs. 5 and 6.

The box lid is secured with three or four

Fig. 3: Shown here with an amplifier, the unit delivers AM radio recaption. Note the home-made vernier tuning device.

Fig. 6: The friction-type vernier dial is fabricated by the builder. This diagram, supplemented by the text, shows how.

round head wood screws \(3 / 8 \mathrm{in}\). long. If desired, mount three or four small rubber tack bumpers to the bottom of the box. If you
mount three bumpers in a tripcd arrangement (two in front and one in rear) the box will always stand solidly on uneven surfaces.

Fig. 1: The directional wire is mounted at los Angeles and swings over the globe. Here we fake a bearing on Hawaii and we can read the approximate distance in miles.

\title{
Beam-Aimer or Girdle The Globe!
}

\author{
By FRED BLECHMAN, K6UGT
}

|F YOU are a ham or SWL DX hound, you know that your best transmission and reception path is a Great Circle line of bearing to the station you're working. But just what is that bearing? Most maps give you an entirely erroneous bearing between any two points on the earth, and most Great Circle bearing charts are centered nowhere near your home town, so they also give you a false reading!

Use an inexpensive world globe, a short piece of piano wire, a couple of simple calculations and a small hole punch, and you can make your own custom Beam-Aimer. This will tell you the correct bearing and approximate distance to any spot on earth from your home town. Swing your beam antenna to the bearing shown and you know you'll be working maximum signal path.

The photos show the author's Beam-Aimer centered on Los Angeles; it could just as well be centered anywhere on earth. To make
your own Beam-Aimer, you'll need a world globe. This doesn't have to be an expensive or particularly large one, just so long as it is reasonably well made. Locate your home town as closely as you can, and punch a small hole at this point with an ice-pick or awl.

Now for some simple calculation. Determine (as closely as you can from the markings on the globe) your latitude and longitude. The latitude is the number of degrees north or south of the equator; longitude is the number of degrees east or west of Greenwich, England (\(0^{\circ}\) longitude). Fig. 2 shows you how to find the point on the globe opposite your home town in latitude. This turns out to be exactly the same number of degrees on the opposite side of the equator. What could be simpler?

To find the point on the globe opposite your home town in longitude, look at Fig. 3. All you do is subtract home town longitude from \(180^{\circ}\); the difference is the number of degrees
of longitude of the opposite point in the other hemisphere.

Let's illustrate a typical case, shown in Figs. 2 and 3. Say your town is located at 35 degrees North latitude and \(120^{\circ}\) west longitude on the globe. To find the opposite point in latitude, just locate the same number of degrees south latitude, below the equator. To determine opposite longitude, subtract 120 from 180; the difference is 60 , the number of degrees of longitude east of Greenwich. Simple, especially since you can almost estimate the opposite point just by eye.

Once you have properly located the opposite point, punch another small hole there. Obtain some piano wire about \(1 / x 2\) in. diameter (not at all critical) and gently form it into a semi-circle equal to the globe diameter. Leave about \(1 / 4 \mathrm{in}\). of wire on each end to act as pivot points when the wire is snapped into the holes in the globe. Bend these ends at about a \(90^{\circ}\) angle, toward the center of the arc.
Now comes the moment of truth. Snap the wire ends into the holes and swivel the wire. If you have been careful in your calculation,

Fig. 4: A closer view shows how the wire is first blacked and then marked in 1000 mile increments to scale in white.
measurements and workmanship, and your globe is accurately marked, you will successfully have girdled the globe. If the wire won't fit in the holes, jams when swiveled, or is too sloppy, either adjust the wire or try a new opposite hole.
The author, until realizing the ease of calculating the opposite point, made two improperly located "eyeball" holes; the calculated hole was right on target.
Marking increments of distance on the wire is another easy matter if you take advantage of the markings on the globe. It just so hap-

Fig. 5: If you don't carefully calculate the opposite position, here's what might happen. Author goofed two times.
pens that \(15^{\circ}\) of longitude at the equator is equal to 1000 nautical miles. Using this measurement, blacken the piano wire with a felt marking pen and put a dot of white ink or paint every 1000 miles.
To determine bearings closely, you could put a compass rose of headings under the hometown pivot, but that could be considered "gilding the lily with a rose." Just swing the wire on the globe to the location of the station you're working. You'll like the Beam-Aimer . . . try it and we're sure you'll find it a worthwhile project.

\section*{Film Spools As Wire Stand-Offs}
- Those plastic spools that 120 film comes wound around can be made into low-loss, nocost stand-off insulators for wires such as radio lead-in. Cut the spool in half, drill a hole through the inside and insert a long wood-screw. Wrap one turn of the wire around the insulator near the flange as shown.

\section*{Joltless Chassis Drilling}
- When drilling a hole in a radio or TV chassis, a hammer and center punch are often used to make an indentation that will keep the drill bit from "walking" out of position. This, however, gives the set a jolt that's likely to jar something loose. To prevent this, predrill a hole in a small piece of hardboard and tape hardboard to the chassis over the spot

where the hole is to be drilled. Using this drilling fixture, there's no need for a centerpunched indentation to start the drill.-J.A.C.

\title{
Attic Antenna System
}

\author{
By ALTON B. OTIS JR.
}

THE philosophy behind the construction is simply that if antenna and rotator are to be protected from the elements, what is the use of weatherproofing and ruggedizing? With most of the parts already in the junk box or available from a local surplus store, the cost of the unit should not exceed \(\$ 7\).

Construction: The only "critical" component is the motor used to drive the rotator. In the author's unit this was a miniature 28 volt dc fan motor from a piece of surplus gear. Any dc reversible motor of approximately the same voltage rating will do. The only changes will be the positioning of mounting holes and power supply requirements. It is advisable to check the motor and power supply combination before installation to insure that the system will supply enough torque to drive the antenna with the drag of the lead wires.
Before starting construction, check your attic to make sure the space requirements
are available. There should be clearance with a radius of 45 in . for the antenna dimensions given. Check the rafter spacing to determine the length of the rotator base. The base is cut \(8 \times 30 \mathrm{in}\). (or longer if necessary) out of \(3 / 4-\mathrm{in}\). pine or plywood. The drive system is mounted 4 in . from one end and the pivot 15 in . from the contact point of the drive shaft. (This will be determired by the actual motor and drive set-up used.) The pivot is made by cutting out two \(3 / 4 \times 5 \times 5 \mathrm{in}\). pieces of plywood, screwing one to the base (its center aligned with the pivot center) and screwing another on the top. A \(3 / 8\)-in. hole is drilled at the pivot center jerpendicular to the surface of the pivot board, and a \(1 / 4-\mathrm{in}\). id threaded or knurled bushing is force fitted or screwed into the hole. The bushing should be as long as possible to provide stability. The rotor disk is cut 30 in . in diameter from \(1 / 4 \mathrm{in}\). tempered hardboard and is braced with two \(4 \times 30 \mathrm{in}\). white pine cross pieces. Before
 RECEPTION

1 ROTOR BOARO

these are attached, drill a \(3 / 8-\mathrm{in}\). center hole and a \(1 / 4-\mathrm{in}\). id flanged threaded bushing (1 in. or longer) and install it from the bottom with a large washer under the flange and fastening nut. Drill a \(3 / 8-\mathrm{in}\). hole into the center of the cross pieces and chip out the bottom to provide clearance for the washer and nut. Force fit the cross pieces over the bushing and nail or screw into place. To obtain extra support, two idler wheels are

Fig. 3: Masking tape on motor shaft provides firm contact between shaft and idler. Old phonograph motor is used here.
fashioned (as shown in Fig. 1) of 16-gauge sheet aluminum, aluminum spacers, and rubber grommets. Place washers between the disk and the pivot board until the disk is just touching the idler wheels.

The antenna cross bars are 70 in . long pieces of \(2-\mathrm{in}\). strapping and are installed as shown with ten-penny nails. Make the motor bracket of 18 - to 16 -gauge aluminum as shown in Fig. 3. The antenna itself (Fig. 4) is made of No. . 8 aluminum ground wire available from any local parts supplier. The antenna dimensions given are for 100 mc on the FM band. If you want to cut the antenna to some other frequency the formulas will provide the correct dimensions (Fig. 4).

To prevent more than \(360^{\circ}\) rotation, two micro-switches are installed on the back of the pivot block as shown in Fig. 5. The switches are tripped by an aluminum cam fastened to the underside of the rotor disk (Fig. 1). Wire the switches and motor to a three conductor cable which goes to the control box. Install the antenna and allow

Fig. 4: On rotor base, adjust tension spring to provide firm contact but not stall the motor. Idler wheels are adjusted to provide smooth operation. Use washers on rofor.

FRONT

FOR 100 MCS .
\(L 1=51.5^{\prime \prime}\)
\(\mathrm{L}^{2}=53.0^{\prime \prime}\)
L3 = 55.5"
\(L 4=58.0^{\circ}\)
\(D^{\prime \prime}=22.5^{\circ}\)

\section*{6}
enough lead length to the rotor disk from the external fastening point to prevent excessive drag. Bring both the antenna lead and control cable together either through a wall or around the molding to the place where
it is to be used. The external features of the control box are left entirely to the builder's imagination. The author used a \(4 \times 5 \times 6-\mathrm{in}\). aluminum box with the switch and indicator installed on top. The components used in the

MATERIALS LIST—ATTIC ANTENNA SYSTEM
\begin{tabular}{|c|c|}
\hline Desig. & Size and Description \\
\hline Cl & 250 mfd, 25-v electrolytic capacitor \\
\hline M1 & de fan motor-15- to 25-v operation (Burstein-Applebee Co., Kansas City. Mo. No. 18 Al61 or surplus. (The 8-A type given is for 12 vdc) \\
\hline NE1 & NE2H Bulb \\
\hline R1 & 33k 1-w resistor \\
\hline S1 & 4 PDT lever switch (Radio Shack No. 27KA5L600 with inside contacts bent inward to allow a center off position) \\
\hline S2, S3 & SPDT micro-switches (Radio Shack No. 25K95L158 or war surplus) \\
\hline T1 & 12-15-rac filament transformer (Stancor No. P. 8130 or surplus) \\
\hline
\end{tabular}
circuit are noncritical and are available from any war surplus dealer, or from your local parts supplier.

While a 12 - to 15 -volt transformer is specified, one supplying as high as 25 volts can be used with a dropping resistor following the rectifier or by using a lower drive ratio in the driving unit to gain the added power.

Performance: The rotor has proved extremely reliable with no breakdowns and smooth quiet operation. The antenna is very directional and more than triples the signal received over a simple folded dipole from most stations. The project is simple and provides a low cost way of improving FM or TV reception. It uses that wasted attic space as well.

Fig. 10: On rear end of rotor base microswitches are adjusted to stop disk pesitively and prevent any overshoot.

Courtesy Paul Kassoy Jr.
Fig. 1: Contral room at WADV (106.7 mc), Buffalo, N. Y. This new station will QSL (verify all reception reparts). They broadcast entirely in stereo for the DX hounds.

\title{
FM DX: the Summer Sport
}

\author{
By C. M. STANBURY II
}

AFTER May 1 most broadcast band DXers reluctantly desert the dials. Long hours of daylight and tremendously increased static make distant reception just plain miserable. There is a solution--try the summer broadcast band. Switch to F'M territory (88 thru 108 mc and DX American via static-free VHF. To begin, one needs an FM set. The DXer may simply hitch a pair of headphones to a "naked" tuner and he's in business. Of course the better your receiver, the more powerful the tuner, the better your DX results. Just what constitutes FM DX? How does the DXer measure his accomplishments? In order to answer these questions, the listener must know what makes distant VHF reception possible. First, there is tropospheric ducting, usually referred to simply as "trop." Here, the troposphere and ground act as a wave guide carrying signals around the

Earth's curvature up to a distance of about 600 miles. Trop occurs with high pressure weather systems, usually in late spring, summer and early fall. It is best during evening but on really good nights will reach a peak between midnight and 2 a.m. Reception can extend to the boundaries of the high pressure area and a look at the newspaper's daily weather map will give you ar idea of what to expect in the way of trop DX.

The second major mode of distant reception is sporadic E-layer "skip." On occasions, extremely high ionization occurs in the Ionosphere about 100 miles up (the Ionosphere is that region of gasses which reflects short wave signals back to and around the curvature of the Earth). When this abnormal amount of ionization oceurs, the sporadic E-layer appears and reflection can be extended all the way up to 108 mc thus provid-

Fig. 2: An FM-AMSTEREO IUner, such as the Knight model KN-170, requires anly an antenna and headphones to pull DX.
ing FM reception to between 600 and 1500 miles. Skip can occur at any time, though spring and summer have the edge.

In addition to trop and skip, there are other forms of VHF-DX. A meteor shower can produce conditions similar to skip except that reception comes in short bursts, making stations extremely difficult to identify. Extensive areas of fog produce trop-like conditions and sometimes when two extremely different weather systems meet, signals will travel along the front. Obviously, both transmitter and receiver must be located along this line.

Trop DX: To the beginner (one who has yet to experience his first skip opening), this would seem to be better DX. However, many experienced FM-DXers consider 500 -mile trop superior to 1000 -mile skip. While the latter does not often occur, when skip does appear it usually puts in strong signals. Signals can be heard with the simplest antenna-receiver combinations. For distant trop, high-gain directional antennas are required. You also need a receiver that can separate weak signals from adjacent channel interference. With trop, stations nearer and in the same direction are always stronger and block out the more distant targets. When there is skip, nearer stations (excluding locals and semi-locals) seldom come through.

In judging DX, there is another important factor-power. FM frequencies can actually be divided into two distinct bands. All channels below 92 mc are assigned to educational stations operated by universities, colleges and even pubic school systems with powers as low as 10 watts. Many such transmitters broadcast only in school hours and only during the school year and are silent during the best part of the DX season. Above \(92 m c\) is allocated to commercial stations, although some are operated by nonprofit organizations, and powers go as lingh as 300 kw depending upon region and antenna height.

An interesting sidelight is that when skip does reach the FM band at all, it invariably affects the lower frequencies first. In other words, it may only appear on the lower power educational portion. But to receive a 10 -watter via skip does require a pretty fair antenna. Incidentally, an all channel VHFTV Yagi should provide good FM-DX results, especially if equipped with a rotor.

Special targets: Because FM stations broadcast to a smaller audience and many channels are still available in most areas, the DXer finds more special stations and programs. Some broadcasters feature nothing but jazz while other programs consist of the world's folk music, most of which is seldom heard on AM. Other transmissions include drama, literature or off beat political commentary.

On the other hand, FM broadcasting is really still in it's pioneer era, comparable with AM in the 1920s. Many stations are falling by the way side, but as fast as they do, others come along to take their place. Recently, WJZZ in Bridgeport, Conn. (connected with jazz musician Dave Brubeck), was taken over by AM-er WICC whose programs they now relay. At approximately the same time, WBUD-FM, Trenton, N. J., came on the air with independent programming (as one listener puts it "music that swings"). In one sense, WBUD-FM compensates for the loss of WJZZ, and regardless of your program tastes, QSLs from these "early" FM calls will, in a few years be collectors items.

Possibly the very "wildest" form of distant FM reception is stereo DX. While stereo signals travel like their monaural brethren, the stereo sub-carrier which activates the two channel mechanism has at best only one tenth the power of the regular carrier.

No question about it, the DXer who can bag stereo signals at a distance of 75 miles or more may consider himself a champion.

\section*{LOOKING OVER NEW PRODUCTS}

\section*{Hi Fi Receiver}

Purely experimental, is this new all-transistorized receiver. It is equipped to receive AM, FM, FM stereo, and is also a complete pre-amplifier and amplifier that provides dual 100 -watt music power output!

Among other features, this unit has a timer clock control, push-button triple speaker selector, dual tuning meters and a self-contained motorized fan to cool the output transistors and power supply.

For more information, write to Sherwood Electronic Laboratories, Dept. RTE, 4300 N. California Ave., Chicago 18, Ill.

\section*{12" 3-Way Speaker}

This budget-priced three way speaker system has a heavy, die cast frame and fiberglass coil form to reduce distortion. The bass cone is decoupled by a mechanical crossover from the mid-range cone. Each unit acts independently.

The compression-type tweeter provides a uniform distribution for excellent treble reproduction, vital for proper balance in stereo systems. A high-frequency level control permits simple adjustment of tweeter volume to suit room acoustics.

The unit costs \(\$ 26.95\), from Allied Radio Corp., Dept. RTE, 100 N. Western Ave., Chicago 80, Ill.

\section*{TV-FM Indoor Antenna}

More than just an attractive "hunk of metal," this antenna is scientifically designed to tune to the different channels selected.

On the high band, the antenna functions as two colinear half-wave dipoles. On the low band, performance is enhanced by the long elements which are effectively 96 in . tip-to-tip.

Called the Canaveral, it sells for \(\$ 9.95\) from Channel Master Corp., Dept. RTE, Ellenville, N. Y.

\section*{LOOKING OVER NEW PRODUCTS}

\section*{New Tape Deck}

Called the Knight KN-4400 Tape Deck, this unit is packed with exciting features! Two speeds, four-track stereo or mono record and playback facilities, and dual v-u meters for precise level and balance control are just a few.

A single sliding lever selects the mode of operation, and built-in digital counter helps in editing and cueing. The deck can be mounted horizontally or vertically.

The KN- 4400 is priced at \(\$ 179.95\) from Allied Radio Corp., Dept. RTE, 100 N. Western Ave., Chicago 80, Ill.

\section*{Miniature Hobby Pump}

A tiny electric motor and water pump combination for hobby work and laboratory experiments has just been announced. The device can be used by hobbyists in operating miniature waterfalls, fountains, HO gauge railroad backdrops and in the photo lab as an agitator for developer and hypo chemicals.

The unit is self-priming and pumps a continuous flow of water at the rate of 1 pint per minute at a \(12-\mathrm{in}\). head. This can be increased to a \(24-\mathrm{in}\). head with two D-cells in series. It pumps in either direction.

Costs \(\$ 2.25\) from Edmund Scientific Co., Dept. RTE, Barrington, N. J.

\section*{New Mobile Transceiver}

Citizens band operators will enjoy 23 channel operation at the flick of a channel selector switch. The unit is ideally suited for cars, boats, and other vehicles. The transceiver features modern panel styling and a vast array of accessories which includes a transistorized S-meter with illuminated dial, a rear deck speaker kit with an ac power supply which, when plugged in with the antenna, allows the unit to double as a base station. For more info, contact Browning Laboratories, Dept. RTE, 100 Union Ave., Laconia, N. H.

\section*{LOOKING OVER NEW PRODUCTS}

\section*{Fixed Directional Antenna}

Called the "Golden Omni-Ray," this antenna provides the directional quality of a rotating beam type, but the antenna doesn't move! The reception pattern is a perfect figure eight, with deep nulls at the sides. Front-to-side interference rejection ratio is 10:1. The control switch permits rotation of the pattern in \(221 / 2^{\circ}\) increments.

Prices start at \(\$ 26.95\). Channel Master Corp., Dept. RTE, Ellenville, N. Y.

\section*{New TV Antenna}

Called the Log-Periodic V antenna (LPV) this antenna eliminates the need to compromise the antenna size and the frequency of the received signal. Indeed, the manufacturer claims that the new antenna is like having a Yagi antenna tuned to each individual channel and the FM bands, too!

The new antenna looks like the skeleton of a flat fish with all the bones tilted forward. The elements each act in concert with the others, and the directional quality is such that the entire antenna is much like a funnel whose open end is pointed at the TV transmitting antenna.

For more information, contact JFD Eleçtronics Co., Dept. RTE, 6101 16th Ave., Brooklyn, 4, N. Y.

\section*{P.A. Problem Pacifier}

A professional quality 50 -watt public address system, known as the Knight KN-3050 is being offered. The amplifier will meet requirements for high fidelity audio in halls, schools, churches and auditoriums.

Among the new features are balance controls for output tubes and hum, boost and cut-type tone controls, and an anti-feedback control. In addition to four mixed microphone inputs, the unit has a socket for a low impedance mike transformer and an output jack for simultaneous recording. A master gain control rides herd on the separate channel controls and the unit has separate bass

and treble controls as well.
The KN-3050 sells for \(\$ 129.50\) at Allied Radio Corp., Dept. RTE, 100 N. Western Ave., Chicago 80, 111.

\section*{LOOKING OVER NEW PRODUCTS}

\section*{C-B Transceiver}

Select any six of the 23 operating channels from the front panel switch, and you are ready to operate with a full five watts. The receiver boasts six crystal-controlled positions, and is also tuneable over the 23 channels. The Nuvistor amplifier provides a sensitivity of 1 microvolt and the 3 -stage IF provides razor-sharp selectivity.

The S -meter provides illuminated RF power or S-meter readings, and a spotting switch gives you positive channel location. Called the HE-90WX, it's available for \(\$ 94.50\) from Lafayette Radio, Dept. RTE, 111 Jericho Turnpike, Syosset, L. I., N. Y.

\section*{Six and Two Meter Converters}

Operating into any shortwave receiver that tunes \(7-11 \mathrm{mc} / \mathrm{sec}\)., these converters provide the user with six or two meter amateur reception. With the converter switch in the off position, the converter is completely out of the circuit, and the receiver operates normally.

Operating range for the HE-56 is \(50-54\) \(\mathrm{mc} / \mathrm{sec}\). and the HE-71 is 144-148 me/sec. The HE-56 is \(\$ 29.95\), the HE-71 is \(\$ 31.95\). Both available from Lafayette Radio, Dept. RTE, 111 Jericho Turnpike, Syosset, L. I., N. Y.

\section*{3-Way Speaker System}

You can mount this speaker system on a wall, put it on a shelf, and it requires absolutely no floor space. Three speakers are employed, with carefully designed crossover and balancing networks.

The ducted port enclosure is finished in a hand-rubbed, oiled solid walnut. A brilliance control for the tweeter is included. The rated impedance is 8 ohms and the power handling capacity is 25 watts with a 10 -watt minimum requirement.

Called the HFS-6, it's available in kit form for \(\$ 52.50\) or wired and tested at \(\$ 62.50\) from EICO, Dept. RTE, 33-00 Northern Blvd., Long Island City 1, N. Y.

\section*{Free \\ Siterature!}
1. John Meshno Jr. offers a catalog of surplus goorlies from assemblies to Zener diodes. You can buy complex units that set the government back thousands, at a fraction of the cost!
2. National Radio Institute has pamphlets that describe three new courses in marine communications, aircraft communications and guidance, and mobile communications. The pamphlets themselves are well-illustrated and educational.
3. Progressive Edu-Kits will send along a- group of three pamphlets that deal with television trouble-shooting, radio troubleshooting and high fidelity. These are very complete and easy to understand. Should answer many of your cuestions.
4. Lofoyette Rodio Electronics has a complete catalog that's far too detailed to describe here. The best bet is to circle No. 4 and see it for yourself!
5. Atlos Sound will send you a bulletin that describes a unique assortment of microplone stands and accessories, including explo-sion-proof loudspeakers!
6. Roanwell Corp. has a one-page circular that describes its new line of stereo headsets. This is the outfit that makes the headsets used for terminal communications by astronauts. These are high fidelity phones, not redesigned miniature loudspeakers.
7. EICO has a "plus" deal here! You'll get a complete catalog of their new electronic kits, PLUS a four-page lesson in electronic construction, PLUS a four-page course leading to a novice class amateur license, PLUS a chart of schematic symbols, and final-
ly, for one last plus, a booklet explaining the reason for stereo!
8. Adler Electronics offers a folder which discusses educational television. Coes into detail of how it's used, microwave systems, translators, and closed circuits. There's a good science fair project here!
9. Adjustable Caster Co. has lots of information on what is called "furniture sag." Ever wonder why hi-fi cabinet doors won't stay closed? Before you try to level your turntable, you'd better level the shelf it sits on! Circle No. 9!
10. Philmore Manufacturing Co. will send-you catalog sheets describing their line of UHF.TV converters, CB walkie-talkies, speaker-mikes code oscillators, and educational kits.
11. Eagle Electric will send a complete assortment of catalog sheets clescribing radio and TV tube protectors, fuses, light winkers, switches and outlets, etc. Circle No. 1 I.
12. Rodio Shack Co. has its new 1963 catalog ready, and it's bulging with goodies for the electronics hobbyist. Included is its exclusive line of "Realistic" equipment. If you can't find what you want here, you can't find \(i t!\)
13. Nationwide Tube Co. has a price list of radio and TV tubes that can save you lots of money, or are you still paying drugstore prices?
14. Olson Electronics has a catalog that comes out regularly. Lots of new and surplus items to select from. Circle No. 14, and we'll get your name on the
mailing list.
15. Conar Electronics would like to send you its new catalog of kits. An assortment of every. thing from television kits to pocket stoves. Lots of variety and modestly priced too.
16. SONY Corp. will send you a set of beautifully printed brochures that describe the new line of imported electronic goodies. Featured is the smallest television set we've ever seen!
17. Sterecsonies has a brochure describing its wireless remote control unit for your hi-fi, stereo system. They also have a wired remote, and a unique monitor that indicates phase or balance. Needs no power to operate, either!
18. Arkay Kits, Inc., would like to send you its brochure of electronic kits and full info on a new TV kit. The information includes a schematic diagram. The kits in tr is line are truly educational, for they are used in many electroni: schools.
19. Chicago Minialure Lamp Works will send you a complete catalog of the teentsy-weenies. Compared to some of these, a No. 47 pilot lamp looks like a 100 -watt house light!
20. Gulton Industries has a vast assortment of literature on everything from rechargeable batteries to ultrasonic tools and data processing and display equipment. Circle No. 20 for more info.
21. Mathew Stuart, Inc., will be happy to send you literature describing five different portable hi-f tare recorders. They also have a hot little intercom. The
sound-to-size ratio of these units is amazing!
22. Switcheraft will send out a 12-page catalog covering the latest in audio accessories. These are the little things that make hi-fi easier. Contains molded cables and junctions to mike mixers.
23. Harmon-Kardon has an assortment of literature that describes their complete line. It comes complete with technical reports from the lab, so obviously they have nothing to hide! The equipment is beautiful and sounds as good as it looks.
24. Sarkes-Tarzion has a booklet entitled "The Care and Feeding of Tape Recorders," Sixteen pages, jam-packed with info for the home recordist. Also includes a table of recording times for various tapes.
25. Dow-Key Co. has a goodly assortment of literature covering their products. These are coaxial relays and switches, connectors and preamps. The hams and CB'ers will want this one.
26. W. F. Polmer Labs has a booklet which explains what the new transistor ignition systems are all about. After reading it, if you decide that this is for you, they also have kits to build your own!
27. ALCO Electronic Sales has a 16-page catalog of new and surplus bargains in the electronics field. Circle No. 27 and we'll get your name added to the regular mailing list.
28. Century Electronics has a booklet on TV and radio servicing. Along with the booklet, they'll send along a receiving tube price list, an order blank, and an unusual through-the-mail diagnosis request form, which entitles you to an analysis of your sick set for a buck!
29. The Heath Co. has a new 100page catalog of their 1963 kit line waiting for youl If you'd like to see the latest in highly. styled, highly versatile electron-
ic gear for a wide variety of purposes, circle No. 29, and we'll see that a copy is sent to you with no obligation.
30. Saxton Products has some unusual delayed action switches for the home or car, something brand new in miniaturized amplifiers, a new light-dimming switch, and a circular of their other products, including assorted wire and cables.
31. Shure Brothers, Inc., provides a complete catalog of their hi-fi, stereo tone arms, cartridges and pre-amps.
32. Altec Lansing Corp. will send you a beautifully printed brochure describing their high fidelity products. They'll also include a list of studio-type microphones and two-way speaker components which permit you to build your own high quality, high fidelity speaker systems.
33. American Concertone Co. makes tape recorders. They make little tape recorders for the business man, and they make great big tape recorders for professional studio use. There's a lot that you can learn about tape recorders from the information they'll send you if you circle No. 33.
34. World Radio Laboratories has been catering to the ham for many years. They have a couple of flyers for you to look over, that cover their new transmitter and an assortment of other necessary products that deserve space in any ham shack!
35. Kodak enters the recording tape business with a classy product that they want to tell you about. If you are a serious home recordist, you'll want this technical bulletin and descriptive literature.
36. The Astatic, Corp. has a handful of catalog sheets describing some of their many quality microphones. These are suitable for tape recording, the ham-
shack, or the professional studio.
37. Notional Kirs has a four-pager for you, describing the new National line. If you're interested in kit-building but don't like the tariff, here's something you should see.
38. Acoustic Research is a name well-known to the audiophiles. Here's a booklet describing their acoustic suspension loudspeakers and a fact sheet on the new AR turntable.
39. Allied Radio Corp. continues to put out a catalog that is so jammed with information that it is used as a reference book by many people employed in the electronics industry. The surprising thing is that it's free. If you really want one, circle No. 39 and we'll ask them to send one out to you.
40. Hallicrafters Corp. has for some time been building the nicest amateur and commercial radio equipment! Now they'll send you lots of info on this gear, as well as on their new citizens band equipment, and the active Hallicrafters-sponsored C-B REACT teams.
41. Antenna Specialists Co. will send you some literature on all sorts of antennas for citizens band and ham use as well as commercial installations. They also have a generator that provides for power in the field.
42. Akro-Mills will send out a small booklet describing the handy cabinet line they make. These cabinets, with the seethrough drawers, will help you convert your home or shop from clutter to convenience.
43. Electro-Voice has a complete catalog of their loudspeakers, enclosures, systems and microphones. The cabinets are particularly attractive, available in fine wood finishes, or unfinished for the do-it-yourselfer.
44. The SONY Superscope Co. will send you a complete catalog and an assortment of literature covering the entire line of super-
scope tape recorclers. Also inclucled is a list of ways that you can use a tape machine, Some of these were new to us!
45. The Sherwood Ca. luas a complete assortment of high-fidelity components and cabinets that are described in a colorful brochure. The cabinets are novel, in that you practically design them yourself by selecting mod-
ules from the wide assortment offererl.
46. Argos Products Co. has a wide variety of speaker systems and enclosures. 'They've also got a very umusual method for monnting these enclosures on a wall. To find out more, circle No. 46.
47. Edmund Scientific will send their new 1963 catalog which
features unusual seientific, optical and mathematical values. War surplus equipment, including many hard-to-get items are also included. Circle No. 47.
48. PACO kits will fill your mailbox with loads of information on new kits for everybody. Covers the very latest in hi-fi and stereo, as well as a complete line of electronic testing cquipment.
```

Radio-TV Experimenter, Dept. FL-632
505 Park Avenue
New York 22, N. Y.
Please orrange to have the literature whose numbers I hove encircled sent to me as soon as possible.

```
```

1	2	3	4	5	6	7	8	9	10	11	12
13	14	15	16	17	18	19	20	21	22	23	24
25	26	27	28	29	30	31	32	33	34	35	36
37	38	39	40	41	42	43	44	45	46	47	48

```

NAME (Print cleorly)
ADORESS
CITY \(\qquad\) ZONE \(\qquad\) STATE \(\qquad\)
Service on this coupon expires Aug. 3, 1963.

\section*{A spectal subscription to} \(2 \rightarrow+D=15\)
 brings you nore
make-it-yourgeif projecte

4 TSSTH SUESCJIMTEOJ-\$3 [505 Park Avenue / New York 22, N.Y. PLEASE Enter my special 4 issues subscript on to \(\square\) I enclose \(\$ 3\) RADIO.TV EXPERIMENTER, starting with No. \(6<4 \square\) Bill me later
\[
\text { MAME____ (PLEASE PRINT) } \mathrm{H} 609
\]

ADORESS
citr 20NE STATE-品 \(\qquad\)
\(\qquad\)

Here's your opportunity to order your own subscription to any - or all - of these S\&M Handbooks. Now, you can be sure you don't miss a single issue of these exciting and instructive publications.
Use the coupon below to order your special 4 issue subscription. Your subscription will start with the next issue to be published.

\section*{Any of these Handbook subscriptions - 4 issues for \(\$ 3\)}

\section*{Build Yourself A One-Man}

\section*{Modern Biplane}

Completely modern in design but based on the traditional one-man flying machine of yes reryear is the EAA sport biplane that is odaptable to home construction, easy to maintain. and costs under \(\$ 1600\) (with a used engine). She is capable of carrying a \(230-\mathrm{lb}\). pilot at a rate of climb of \(400 \mathrm{ft} / \mathrm{min}\). to a ceiling of 7000 fs . With an 85 hp Continental engine up front her top speed was about 130 , and cruising speed around 110 . The biplane design permits a larger engine-up to 125 hp . Positive response and orthodox spinning behavior are the final traits that mark her as an ideal one-man build-it-yourself flying machine.

Craft Print No, 334, comprising 8 sheets of draw ings and full building instructions are available af:

\title{
An open letter from the Publishers of RADIO-TV EXPERIMENTER
}

\section*{Published by SCIENCE and MECHANICS}

Earn on-spot commissions with pre-sold nationally advertised do-it-yourself products
- SCIENCE and MECHANICS recognizes the importance of direct selling and is lending its tremendous resources and capital to launch YOU into a new multi-million market. SCIENCE and MECHANICS and its family of publications reaches nearly 5 million consumers of do-ityourself products every six months, advancing to this pace throughout its 32 year old history. We are experts in the do-it-yourself market-we know what our buyers want, we know how they think, and our finger is constantly on his pulse awaiting any new change or trend. SCIENCE and MECHANICS is one of the largest sellers of do-it-yourself plans in the United States-all types of plans-boats, models, home furnishings, toys, science projects and many, many more. We were the first publishing concern to recog. nize the need for do-it-yourself kits and have since sold untold thousands of money-saving, easy-to-assemble photo meters, shop tachometers, darkroom meters and loads of other highly salable precision kits.
You might say after reading this far that SCIENCE and MECHANICS has accomplished quite a lot, but as a famous singer once said, "You ain't heard nothing yet!" We publish 35 special interest Handbooks to quench the thirst of the millions of people looking to save money by repairing, assembling, servicing and improving. their homes, cars, TV sets, radios-or people looking for a feeling of accomplishment, by making something useful in their home workshop. Here are just a few of the specialized, wellknown titles we publish: RADIO-TV EXPERI. MENTER, CAR REPAIR HANDBOOK,

HOME WORKSHOP HANDBOOK, WOOD. WORKER'S ENCYCLOPEDIA-plus thirty-one more.
We have made a lot of money selling these plans, kits, products and magazines and expect to make a lot more-but here is the difference: we want you to share in the future profits by helping us sell our highly respected and well known merchandise and we'll pay up to \(50 \%\) on-spot commission for just a few hours of your time. Absolutely no previous selling experience is necessary and age is not a factor. Unbelievably easy to sell friends, neighbors, relatives and all kinds of hobbiests on merchandise already pre-sold by our national advertising campaigns. And, here is the best part . . . repeat sales are as easy as pie . . . you won't have to move a muscle, your customers will contact you for re-orders!

\section*{MAIL NO-RISK COUPON TODAY!}

Get on this money-making bandwagon TODAY! We supply you with large, expensive catalog of fast-moving, repeat-selling merchandise, and all orders and checks will come directly to you. A sample Craft Print and fully detailed letter, order forms, and your official SCIENCE and ME: CHANICS Representative Identification Card will be seut to you. You do not stock any mer. chandise we will drop-ship all your orders within 8 hours of receipt. Return the coupon below with \(\$ 1\) for Money-Making Starting Outfit deductible from your first order. There is no obligation to you whatever.

RADIO.TV EXPERIMENTER

\footnotetext{
PETE REYNOLDS - SCIENCE and MECHANICS - 505 Park Avenue - New York 22. N. Y.

Ok, I'm sold! Enclosed please find \(\$ 1.00\) for my com. plete selling outfit of SCIENCE and MECHANICS Products. This includes attractive catalog, order forms, sample Craft Print, supply forms, detailed letter and Official SCIENCE and MECHANICS ID Card. I understand there is absolutely NO OBLIGA. TION on my part and that the \(\$ 1\) is refondable on my first order.
H632

NAME
AUDRESS
CITY_ZONE_STATE
BANK REFERENCE
PRESENT PRINCIPAL
OCCUPATION
}

\section*{ORDER YOUR 1963}

\section*{S \& M HANDBOOKS}

Use the coupon below to insure yourself that you will receive each issue of the S\&M Handbooks you want-direct to your mail box. No chance of missing a single copy, if you order by mail.
Here's the complete 1963 line-up. Your copies will be mailed to you, postpaid, as they are published during the months shown below. Allow four weeks for delivery of 1962 editions.
\begin{tabular}{|c|c|c|c|c|c|}
\hline \[
\left|\begin{array}{c}
1962 \\
\text { ditition } \\
609 \\
596
\end{array}\right|
\] & \begin{tabular}{l}
JANUARY \\
620-Radio-TV Experimenter \\
621-Car Repair Handbook \\
622-Income Opportunities \\
623-Gun Handbook
\end{tabular} & 1962 Edition 611 592 594 597 & \begin{tabular}{l}
FEBRUARY \\
624-Home Workshop Handbook \\
625-1001 How-To Ideas \\
626-Science Experimenter \\
627-Garden Handbook
\end{tabular} & 1962
Edition
593
613 & \begin{tabular}{l}
MARCH \\
628-Boat Builder's Handbook \\
629-Electrical Handbook \\
630-Fisherman's Manual \\
631 - How To Buy Or Sell Your House
\end{tabular} \\
\hline \[
\begin{aligned}
& 569 \\
& 612 \\
& 618 \\
& 599
\end{aligned}
\] & \begin{tabular}{l}
APRIL \\
632-Radio-TV Experimenter \\
633-Car Repair Handbook \\
634-Woodworker's \\
Encyclopedia \\
635-Camping Handbook
\end{tabular} & \[
\begin{aligned}
& 584 \\
& 575 \\
& 598
\end{aligned}
\] & \begin{tabular}{l}
MAY \\
636-Home Workshop Handbook \\
637-1001 How-To Ideas \\
638-Home Repair Handbook \\
639-Careers and Jobs
\end{tabular} & 607 & \begin{tabular}{l}
JUNE \\
640-Boat Builder's Handbook 641A Painting and Refinishing 642A Home Study Courses 643-Auto Racing Handbook
\end{tabular} \\
\hline \[
\begin{aligned}
& 595 \\
& 578 \\
& 588
\end{aligned}
\] & \begin{tabular}{l}
JULY \\
644-Radio-TV Experimenter 645-Car Repair Handbook 646-Woodworker's Encyclopedia 647-Home Appliance Repairs 648-Kitchen \& Bath Improvements
\end{tabular} & \[
\begin{aligned}
& 564 \\
& 608 \\
& 605 \\
& 606
\end{aligned}
\] & \begin{tabular}{l}
AUGUST \\
649-Home Workshop H'book 650-1001 How-To ideas 651-Science Experimenter 652- Home Buyer's Guide to Plumbing \& Heating 653-Surplus and Salvage Projects
\end{tabular} & \[
\begin{aligned}
& 580 \\
& 585 \\
& 610
\end{aligned}
\] & \begin{tabular}{l}
SEPTEMBER \\
654-Boat Building Handbook and Boatcraft 655-Electrical Handbook 656-Junior Mechanics Handbook 657-Elementary Electronics 658-Christmas Suggestions
\end{tabular} \\
\hline \[
\begin{aligned}
& 582 \\
& 560
\end{aligned}
\] & \begin{tabular}{l}
OCTOBER \\
659-Radio.TV Experimenter 660-Car Repair Handbook 661 -Woodworker's Encyclopedia 662-Radio-TV Repairs 663-Photography Guide
\end{tabular} & 616 & \begin{tabular}{l}
NOVEMBER \\
664 -Home Workshop Handbook 665-1001 How-To Ideas 666-Furniture Handbook 667-Crafts \& Hobbies \\
668-Home Modernization Handbook
\end{tabular} & \[
\begin{aligned}
& 574 \\
& 619 \\
& 602
\end{aligned}
\] & \begin{tabular}{l}
DECEMBER \\
569-Boat Building Handbook and Boatcraft 370—Home-Built Power Tools 671-Engine Handbook 672-Small Investor's.Guide 573-Small Home Plans
\end{tabular} \\
\hline
\end{tabular}

I am enclosing \$___ I have written the numbers of the S\&M.
 Handbooks ordered below. The Handbooks are to be shipped to me as they are published.

Name \(\qquad\)
505 PARK AVENUE
NEW YORK 22, N.Y.
Address \(\qquad\)
\(\qquad\) Zone \(\qquad\) State \(\qquad\)

\section*{NITERESTED IN MANNE WORE monev?}

Of course you are! And now you can be sure you get all the special S\&M Handbooks specially dedicated to your interest-and you'll get them automatically! No chance of missing a single issue. Here's your opportunity to build or add to your own special interest library-and save money, too.
Here's what you'll get during the course of a year:

\section*{S\&M BUSINESS OPPORTUNITIES GROUP}

\author{
Careers and Jobs Crafts \& Hobbies \\ Electrical Handbook (2 issues) \\ Home Appliance Repairs \\ How to Buy or Sell Your House Income Opportunities Inventor's Handbook o.TV Repairs Small Investor's Guide
}

Think of it! 10 big S\&M Handbooks. They sell by mail for \(\$ 1\) each, but you save \(25 \%\) when you order your special S\&M Business Opportunities Group subscription. Do it now-use the coupon below.

\section*{10 Big S\&M Handbooks only \(\$ 7.50\)}

\section*{Enjoy the Savings and Pleasure of Building Your Own:}

\section*{Prexisian Destade Resistinte Ean}

Designed so the electronic experimenter can get any value of resistance at \(1 \%\) accuracy. Made of precision components, this decade resistant box offers such advantages as:

Speed . . Fast finger-tip switching action provides any resistance value from 1 ohm to \(1,111,110\) ohms within seconds.

Accuracy ... Add or subtract as little as 1 ohm in eritical circuits with 1\% accuracy.
Convenience ... No knobs to fiddle with when changing from range-to-range. Carrying handle can be set to hold the box at an easy to work angle and efficlent bench-top visibility.
Quick Assembly .. Ordinary hand tools are all that's required to assemble this precision instrument in less than 2 hours.

This S\&M Decade Resistance Box kit carries an unconditional guarantee of performance and accuracy. If for any reason you are unsatisfied with the performance, It may be returned within 10 days and your money will be refunded.
\begin{tabular}{|c|}
\hline \multirow[t]{14}{*}{\begin{tabular}{l}
SCIENCE AND MECHANICS, Kits Division \\
505 Park Avenue, New York 22, New York \\
Add \(10 \%\) for Canadian and Forelkit ordera. \\
Please send me. Complete Kits and plans fot assembling the S\&M Decade Resistance Bqx @ \$24.95 each. I understand that i! I am not completely satisfied I may return the kit within 10 days for a complete refund. \\
\(\square\) Check or money Send Decade Resistance order enclosed. ship postpaid. Kit C.O.D. I will pay \(\$ 24.95\) plus postage and C.O.D. charges. \\
Name. \(\qquad\) (please print) \\
Address \(\qquad\) \\
City. \(\qquad\) Zone, \(\qquad\) . State \(\qquad\)
Decade Resistance Box is also available fully assembled and tested at \(\$ 29.95\).
\end{tabular}} \\
\hline \\
\hline
\end{tabular}

\section*{Build Better Boats with S\&M FULL-SIZE Patterns}

Insure Accuracy-full-size patterns on the "Minimax" duplicate the originals used by the designer when he built the first "Minimax". Each component can be cut to exact size for a perfect \(f_{i t}\) in final assembly.
- Convenient-With full-size patterns on the Moth Class "Sun Fun Sailer" you don't incur the extra expense and time thot is spent acquiring the necessary drawing tools and making the drawing on extra large sheets of paper.

Complefe plans for eoch one of these popular boats are available af:

Save Time-Ready to use when you are reody to begin. Full-size patterns on critical parts in the "Seo Flea" enable you to use time generally spent on drawing full-size patterns in hours of enjoy. ment on this hair-trigger action surfboard that provides you with the utmost in sailing sport.

SCIENCE and MECHANICS, Dept. 2234

\section*{Craft Print Division}

505 Park Avenue, New York 22, New York
Enclosed is \$.... for FULL-SIZE plans that cost \$8 each on the:
\(\square\) \#346-Sun Fun Sailer \(\square\) \#347—Minimax \(\square\) \#348-Sea Flea
Please allow four weeks for dellvery. For spoelal handint, ineluding frat elass mail delivery. add 50t per Item ordered.
Name (PiEXASE PRRINT)
Street .
City. Zone. . . . State

\section*{Want Additional Income?}

Earn top commissions taking orders for SCIENCE and MECHANICS, S\&M Handbooks and a host of S\&M products. National advertising makes your selling job much easier. Send \(\$ 1\) (refunded with your first order) for details. Pete Reynolds, Science and Mechanics, 505 Park Avenue, New York 22, N. Y.

\section*{Want 0 Truiler? 'Build It YourseIf' from these PLANS.}

No. \(200^{\text {Mandy Anty. Folding camp frailer that tows easily }}\) No. 200 and also carries your boat. \(8^{\circ}\) overall length. weighs onty 640 tos. Sleeping room for three adults or two adults and three children. Space for cooking in bad weather. \(\$ 3.00\).

No. 314 Car ita camper. The increasing popularity of station wagon camping has caused it to become more and more a family affair, demanding additional space for sleeping and carrying extra equipment. The quick-lold car top camper solves these problems with one compact unit that can be attached to or taten off your station wagon in minutes. Mosquito-prool fuli-length sleeping shetter for economical touring. fits station wagons and sedans too! Cost of the camper with ready-made shetier is about \(\$ 128\), and you can save an additional \(\$ 20\) by making the shelter at horse. \(\$ 3.00\).

\section*{SCIENCE and MECHANICS Depl. MHJ-1}

505 Park Avenue, New York 22.N.Y.

Enclosed is \(\$ \ldots \ldots\) Send me plan(s): \(200 \quad 314\)

Plans are \(\$ 3.00\) each.

\section*{Your Best Newsstand Buys Are}

\section*{\#628 Boat Builder's Handbook}

- How Many Horses?
- Fitting Out for Spring
- Weather or No
- Basic Navigation
- Build a Hydro-Kart

Must information about boats and boating is featured in this fact-filled volume. Complete, easy-to-follow plans show how to build tested boats at a big savings. Also fertured are timely articles on modifications, equipment you can make yourself, servicing and repair. Here are some of the articles you'll be reading:
- Boat-Building Woods
- Aquaplane and Skies
- What's New In Boating
- Burning Issue Is Fuel
- Powerized Paddleboard

\section*{\#630 Fisherman's Manual}

Every rod and reel enthusiast will enjoy this how-to volume because the contents range from selecting and making fine tackle, that normally is very costly, to tested tricks used by the old pros to seek out, hook and land the elusive lunkers that seem to exist only as legends. Buy it and read about:
- Repairing Glass Rods
- Curing Outhoard Overheating
- How to Take 'Em Off the Top
- The Ideal Spinning Rod

- Which Lures Catch Bass
- Leader Logic
- Study Weather for More Fish
- How Science Aids the hngler - How Water Temperature Affects Fishing

\section*{\#629 Electrical Handbook}

An indispensable guide to over 35 projects that pertain to electricity and how it can safely be used. This is more than just a how-to-wire your house volume, because just about everything that's powered by electricity, from science fair projects to home appliances, is covered in this inclusive book. A few of the titles are:
- Low-Cost Photo Lights
- Portable Air Compressor
- Servicing Power Tools
- Electric Alternator System
- Low-Cost Decade Box

- Microscope MicroIlluminator
- Overhauling Motors
- Anti-Snooper Alarm
- Electric Slide Rule
- Combination Warm \& Cold Air Fan

\section*{\#631 How to Buy or Sell Your House}

- Which House for You?
- New Houses vs. Old
- Financing Responsibilities
- Seven Fix-Up Sales Steps
- Selling With or Without a Broker

Fact-filled guide for householders on the move and those who want to keep informed as to what's happening in the house market today. This volume gives practical tips on buying, selling and financing. It also has features explaining the advantages of building and/or buying a manufactured home. In this guide you'll read about:
- Why You Need an Attorney
- Buyers Checklist
- Trade-Ins and Exchanges
- Are Auction Houses Worth It?
- Buyer and Seller at Closing

Pick up your copies of these comprehensive volumes at your newsstand or' send \$1 to include postage and handling for each guide ordered to:

\section*{SCIENCE AND MECHANICS}

HANDBOOK DIVISION 505 PARK AVENUE NEW YORK 22, NEW YORK

\section*{SCIENCE AND MECHANICS MAGAZINE}

Handbook Division, 505 Park Avenue. New York 22, New York Enclosed is \(\$\). to include postage and handling for the do-it-yourself volumes circled below, at \(\$ 1\) each. Dlease allow four weeks for delivery.
\#628
\#629
\#630
\#631
NAME \(\qquad\)
ADDRESS
CITY \(\qquad\) ZONE \(\qquad\) STATE

\title{
WHIITS'S RADO 100
}

An up-to-date broadcasting directory AM, FM, TV, and short wave stations but absolute accuracy is not guaranteed and, of course, only information available up to press-time could be included. Copyright 1963 by Science and Mechanics Publishing Co., a subsidiary of Davis Publicaflons, Inc., 505 Park Ave., New York 22, N.Y.

\title{
QUICK REFERENCE INDEX
}
U.S. and Canadian AM Stations by Frequency155
U.S. and Canadian AM Stations by Location. 164
U.S. AM Stations by Call Letters 174
Canadian AM Stations by Call Letters. 182
Mexican and Cuban AM Stations 182
U.S. FM Stations by States 183
U.S. FM Stations by Call Letters 186
Canadian FM Stations by Location 189
Canadian FM Stations by Call Letters 189
U.S. Television Stations 189
Canadian Television Stations 191
World-Wide Shorl-Wave Stations. 191

\section*{U. S. and Canadian AM Stations by Frequency}
U.S. stations listed alphabetically by states within groups, Canadian stations precede U.S.

Abbreviations: Kc., frequency in kilocycles; W.P., watl power; \(d\)-operates daytime only. Wave length is given in meters Ke. Wave Length W.P. 540-555.5
CBT Grand Falls, N.F. CBK Regina, Sask. KVIP Redding, Calit. KFMB San Dleqo. Calif. WGTO Cypress Gardens.

Florida 50000 WDAK Columbus, Ga. KBRV Soda Springs. Idaho KWMT FE, Dodge, Iowa KNOE Monroe, La. WOMV Pocomoke City. Md. WBIC Islip. N.Y. WETC Wendell-Zebulon, N.C. WARD Canensburg. Pa WYNN Florence. S.C. WOXN Clarksville. Tenn. WRIC Richlands, Va.
10000

5000
5000
5000

0000
500
500
5000
500
300
250
250
250
250
1000
1000

\section*{550-545.1}

CFNB Fredericton, N.B. CFBR Sudbury. Ont. CHLN Three Rivers, Que. CKPG Prinee George. B.C KENI Anchorage. Alaska KOY Phoenlx. Ariz. KAFY Bakersfield, Callf. KRAI Cralg. Colo.
. Wave Length W.P. WQTE Monroe, Mieh. WEBC Duluth. Minn.

Kc. Wave Length W.P. KWTO Springheld, Mo. 50000 KMION Great Fall's, Mont. 5000 d WGAI Elizabeth City. N.C. wis Columbia, WIS Columbia, S.C. WHBQ Memphis. Tenn KFDM Beaumont. Tex. WIls Weckley. Wash 5
 CO Cranbrook. B.C. CFCB Corner Brook. CJEM Edmundston, N.B. CFWH Whitehorse. Y. T. WAAX Gadsden. Ala. KCNO Alturas. Calif. KLAC Los Angeles, Calif. WGMS Washington. O.C. WACL Waycross. Ga, WKYB Paducah. Ky. WVMI Biloxl. Miss. KGRT Las Cruces, N. Mex. WMCA New York. N.Y. WSYR Syratuse. 'N. Y. WWNC Ashevilie. N.C WLLE Raleluh, N.C. WKBN Youngstown. Ohio WNAX Yankton. S. Dak. WFAA Dallas. Tex. WBAP Ft. Worth. Tex KLUB Salt Lake City, Utah KVI Seattle, Wash. WMAM Marinette. Wis. 580-516.9
CJFX Antigonish. N.S CFRA Ottawa, Ont. CKPR Ft. William. Ont. CKPA Edmonton. Alta. Cк゙Y Winnipeg, Man. CHLC Hauterlve, Que. CHLC Hauterive, Qub.
WABT Tuskegee. Ala. KABI Kotchikan. Alaska KTAN Tucson, Ariz. KMJ Fresno., Calif. KUBC Montroso. Colo. WOBO Orlando. Fla WGAC Augusta Ga. KFXD Nampa, Idaho WILL Urbana. III. KSAC Manhattan. Kans. WIBW Topeka. Kans. KALB Alexandria. La. WTAG Worcester. Mass. WELO Tupelo. Miss. KANA Anaconda, MOnt WAGR Lumberton. N.C. KWIN Ashland, Oreg. WHP Harrisburg. Pa.
\(\qquad\) 5000 WKAQ San Juan, PA,R. \(1000 d\) 1000 WRKH Rockwood. Tenn 500 d KOAV Lubbock. Tex. 5000 WLES Lawrencevillo, \(\mathrm{Va}_{\mathrm{a}}\) 5000 WCHS Chàrleston W.V. 5000 1000 5000
5000 5000
5000 59
\(C\)
\(C\) FAB-508.2 CKRS Jonquitr, Man. CFTK Terrace, B.C. VOCM St. Johns. N.F.
KHAR Anchorage, Alask WHAR Anehorage, Alask WRAG Carrolton. Ala. KBHS Hot Sprinos, Ark.
 Wh Orande Park, Fla. WGGA Gainesvile. Ga. KFRM Contordia. Kansas WCBI Columbus, Miss, KSD St. Louis, Mo. KOPR Butte, Mont WGR Buffalo, N.Y. WDBM Statesville, N.C. KFYR B is marek. N. Dak. WKRC Cincinnati. Ohlo KOAC Corvallis. Oreg. WHLM Bloomsburg, Pa. WPAB Ponce, P.R. WXTR Pawtucket, R.I. KCRS MIdiand, Tex. KTSA San Antonlo. Tex. WDEV Waterbury. V WSVA Harrisonburg. KARI Blaine, Wash. 560-_535.4
CJOC Dawson Creek, B.C. CHCM Marystown. Nfid. Can. 1 kw CJKL Kirkiand Lake. Ont. 5000 CFOS Owen Sound, Ont. CKCN Soven lles, Que. WOOF Oothan, Ala. KYUM Yuma. Ariz KSFO San Fran., Cali!. KLZ Donver, Colo. WQAM MIami. Fia. WIND Chicago, III. WMIK MIddlesboro, Ky. WFRB Frostbure. Md. WHYN Springheld, Mass. WRKH Rockwood. Tenn.

000 KFXM San. bernara Chal

\section*{1000}

1000 KCSJ Pueblo, Colo.
5000 WDLP Panama City. Fla. WPLO Allanta. Ga KGMB Honolulu, Hawail KID Idaho Falls. Idaho WVLK Lexington, Ky. WVLK Lexington, Ky WKZO Kalamazoo. Miteh KGLE Glendive. Mont. wow Omaha, Nobr. WROW Albany, N.Y. WROW Albany, N.Y KUGN Eugene, Oreg. WARM Seranton, Pa. WMBS Uniontown. Pa. KTBC Austin. Tox KSUB Cedar City, Utah WLVA Lynehburg, Va.
KHO Spokane, Wash. 600-499.7 CFCF Montreai, Que. CFCH North Bay, Ont. CFOC Saskatoon. Sask. 5000 CJOR Vancouver. B. 50000 WKCL Eruro, N.S. Ala. KCLS Flagstaff. Ariz. KVCV Redding. Callf. kOGO San Olego. Calit. KZIX Ft. Collins, Colo. WICC Bridgoport. Conn. WPDQ Jacksonville, Fla. WMT Codar Rayids. Lowa WWOM Now Orleans, La WFST Caribou, Malne WCAO Baltímore, Md. WLST Eseanaba, Mich WTAC Flint, Mich. KGEZ Kalispell, Mont.
WCVP Murphy, N.C. WCVP Murphy, N.C. WSIS Winston-Salem, N.C. KSJB Jamestown. N.O. WFRM Coudersport, Pa WAEL Mayaquez. P.R. WREC Memphis, Tenn. KROD EI Paso. Tex. KERB Kormit. Tex. кTBB Tyler, Tex. 610-491.5
\(500 d\)
\(500 d\)
5000
5000 Kc. WaveLength W.P.
CHNC New Carlisle. Que. CJAT Trail, B.C. \(\qquad\) Man. 5000 CKKL Thompson. Man 1000 5000 CKTB St. Catharines, Ont, 10000 CKYL Peace River, Atta. 10000 WSGN Birmingham, Ala. 5000 1000 KFAR Falrbanks. Alaska 5000 1000 KAVL Lancaster, Calif. 1000 1000 KFRC San Francisco. Calif. 5000 1000 WFRCR Miami. Fla* . Fall. 5000 5000 WCKR Pensacola, Fla. 500 d 1000 d WCEH HawkInsville, Ga, 500 d \(\begin{array}{lll} \\ 5000 \mathrm{~d} \\ 1000 & \text { WROS Russelliville, KY. } & 500 \mathrm{~d} \\ & 5000\end{array}\) 1000 WDAF Kansal City, Mo. 5000 1000 KOJM Havre. Mont. 1000 1000 WGIR Manchester. N.H. 5000 5000 KGGM Abbuquerque, N. Mex. 5000 5000 WA YS Charlotte. N.C. Nex. 5000 \(\begin{array}{lll}5000 \\ 5000 & \text { WTVN Columbus, Ohlo } & \$ 000 \\ 500 d & \text { WIP Philadelphia. Pa. } & 5000\end{array}\) \(\begin{array}{ll}500 \text { WIP Philadelphia. Pa. } 5000 \\ \text { KILT Houston. Tex. } & 5000\end{array}\) \(\begin{array}{ll}\text { KILT Houstón. Tex. } & 5000 \\ \text { KVNU Logan. Utah } & 5000\end{array}\) WSLS WSLS Roanoke, Wa, \begin{tabular}{ll}
KEPR Kennowlck. Wash. 500 d \\
\hline 00
\end{tabular} 620-483.6
CFCL TImmins, Ont. 1000
CKCK Regina, Sask. 50
IGTAR Phoenlx, Ariz. 5000KNGS Hanford, Calif. \(\quad 1000\)
KWSD Mt. Shasta. Callf. 1000 dKSTR Grand Junction. Colo. 5000 dWSUN St. Petersburg. Fla. 5000WTRP LaGrange. Ga. Ia. 1000 dKWAL Wallace. IdahoKMNS Sloux City. LowaWTMT Louisville. Ky.WLBZ Bangor, MalneWJDX Jackson, Miss.WVNJ Newark. N.J.WHEN Syracuse. N.Y.WONC Durham. N.C.KGW Portland. Oreg.WHJB Gr⿻ensburg. Pa.WCAY Cayce. 8.C.WATE Knoxville. Tenn.KWFT Wichita Falls. Tex.WCAX Burlington, Vt.WWNR Beckley. W.Va.WTMJ Mllwaukee, Wis.
\(630 _475.9\)
CFCO Chatham, Ont. 1000
CKAR Huntsville. Ont.\(\begin{array}{ll}\text { CHLT Sherbrooke, Que. } & 5000 \\ \text { CFCY Charlottotown, P. E.I. } 10000\end{array}\)CFCY Charlottotown. P.E.I. 10000
CJET Smlth Falls, Ont. 1000CKRC Winnlpeg. Man. 5000CKOV Kelowna, B.C. \(\quad 1000\)WAVU Albertville. Ala. 1000dCHED Edmonton. Alta. 10000WJDB Thomasvilie. Ala, 1000 dKJNO JuneaU. Alaska

Kc．Wave Length KMCO Conroe．Tex． KCLW Hamilton．Tex WODY Bassett，Va． KUEN Wenatehee，Wash． WATK Antigo，Wis．

\section*{910－329．5}

CJDV Drumhehler，Alta． CKLY Lindsay．On CFJC Kamloops，B．C CHRL Robervat，Que． WDVC Oadevillo．Ala． KPHO Phoenix．Ariz． KAMD Camdon，Ark． KDEO ED Cajon，Calif． KEWB Dakland，Calli． KOXR OXnard，Callf． WHAY Now Britaln，Conn． WPLA Plant City，Fla． WGAF Valdosta，Ga． WAKO Lawrenceville，III． WSUI Iowa City Iowa WABI Banpor，Maine WFDF FIInt，Mich． WCOC Meridian，Miss． KOYN Billings．Mont． KYSS Mlssoula，Mont． KBIM Roswell，N．M ox． KCJB Minot N．Dak． WPFB Middletown，Ohio KGLC Mlami，Dkla． WAVL Apollo，Pa． WGBI Scranton，\({ }^{\text {Pa }}\) WSBA York，P WPRP Ponce，P．R． WNCG North Charleston，S．C wJCW Johnson City．Tonn WEPG S．Pittsburgh，Tenn． KNAF Fredericksburg．Tex． KR1O McAllen，Tax． KRRV Sherman，Tox KALL Sherman．Lake city，Uû̀h
KWRJ White River Junetion，

WRNL Richmond，Va． WHYE Roanoke，Va．
KORD Pasco，Wash． KIXI Seattlo，Wash． WHSM Hayward，Wish． 1000 WOOR Sturgeon Bay，Wis． 1000 d

\section*{920－325．9}

CFRY Portage La Prairie．
CJCH Halifax，N．S．
CJCJ Woodstock，N．B．
CKCY Sault St．Marle，Ont． CKNX Wingham，Ont WWWR Russellville．Ala． KARK LIttle Rock．Ark．\(\quad 5000\) KDES Palm Sprln9s，Callf． 1000 d KREX Grd．Junetion，Colo． KLMR Lamar．Colle． WMEG Eau Gallie，F WGST Allanta，Ga． WGNU Granite Clity，III． WMOK Metropolis．inI． WBAA W．Lafayette．Ind． WTCW Whitesburg．Ky． WBOX Bogalusa．La． KTOC Jonesboro，La． WMPL Hancock，Mlch． KDHL Faribault．Minn．
KWAD Wadena．Mínn． KRAM Las Vegas．Nov．
KOLO Reno，Nov．
KQEO Albuquerque．N．Mex． WTTM Trenton，N．J． WGHQ KIneston．N．Y． WIRD Lake Placid，N．Y． WBBB Burilington，N．C．
WMNI Columbus，Ohio WMNI Columbus．Ohi NKVA Lawlstown．Pa． WJAR Providence，R．I． WTND Orangeburg，S．C． KEZU Rapld City，S．Dak．
WLIV Llvingston．Tenn． WLIV Livingston． KECK Odessa．Tex． KTLW Texas City，Tex． KITN Olympla，Wash．
KXLY Spokane，Wash． WMMN Falrmont，W．Va． WOKY Milwaukce，Wis．

\section*{930－322．4}

\section*{CFBC Saint John，N．B．}

CJON St．John＇s，N．F． 11000d
1000 d
5000 d
5000 d
100010000 d
1000 d1000
5000望合5000 d
5000500 d
1000 d000 d
5000
n1000 d
5000 1000 d
1000佥

Min
1000
10000
1000
10000
2500
5000
5000

\section*{5000
1000}

1000d
5000
500 d
5000
500
5000

\section*{1000 d}

1000 d

\section*{\(1000 d\)}

1000

10000
10000

W．P．｜Kc．Wave Length
250 d KTKN Ketenlkan，Alaska 500d KAPR Douglas，Ariz． 000d KFGJ Flagstaff，Arlz． 1000 d KNGL Paradise，Calif． 250 d KIUP Durango，Colo． WKSB Milford，Del． WHAN Haines City．Fla．
WJAX Jacksonville，Fla． WKXY Sarasota．Fla． WMGR Balnbrid po，Ga． WGTA Summarvilio，Ga． KSE P Pocatello，Idaho WKCT Bowling Green．Ky． WFMO Frederick，Md． WREB Holyoko．Mass． WBCK Battle Creek．Mich． KKIN Altkin，Minn． WSLI Jackson，Miss． KWOC Poplar Bluff．M
KOFI Kalispelt，Mont． KOGA Ogallala，Nebr． WWNH Rochester，N．H．

\section*{}

\section*{ \\ W} WSOR Johnstow，N．N．Y． WITN Washington．N．C． WEOL Elyrla，Ohio

940－319．0

\section*{C．
C．
\(K\)
\(K\)
\(K\)
\(W\)
\(w\)} JIB Yerkton．Sask． KOBY Tucson，Arlz． KFRE Fresno，Calif．
WINZ MIami，Fla． WMAZ Maconi，Ga． KAHU Walpahu．Hawail
WMIX Mt．Vernon，lll KIOA Des Molnes，lowa \(W\)
\(W\)
\(\mathbf{K}\) WS
KS
WF
KG SWM South Haven，Mich VSH Aurora，Mo． FRC Fayettevilie，N，C． WESA Bend．Oreg． WGRP Grarlervilie，Pa． WIPR San Juan，P．R．
KIXZ A marillo．Tex． KIXZ Amarillo．Tex KATQ Texarkana，Tex．
WNRG Grundy． WNRG Grundy，V
950－315．6 CKNB Campbellton，N．B． CKBB Barrie，Ont． KXJK Forrest Clty．Ark． KFSA Ft．Smith，Ark． KAHI Auburn，Calif．
KIMN Denver．Colo WNUE Ft．Waiton Seh．，Fla． WLOF Oriando，Fla．
WGTA Summerville． WGOV Valdosta，Ga． KBOI Boise，Idaho KLER Orofino，Idaho
WAAF Chicago，Ill． WXLW Indianapolls，Ind． KOEL Oelwe！n，Jowa KJRG Newton，Kans． WBYL Barbourville．Ky． WORL Boston．Mass． WWJ Detroit．Mleh． KRSI St．Louis Park，Minn WBKKH Hattiesburg，Mlss，
KLIK Jefferson City，Mo． WBER Moncks Corner．N．C． K WPET Greensboro．N．C． KYES Roseburg，Oreg． WNCC Barnesboro．Pa． WSPA Spartanbure．S．C． KWAT Watertown．S．Dak WAGG Franklin，Tent
KDSX Denison．Tex． KDSX Denison，Tex．
KPRC Houston，Tex． KPRC Houston，Tex
KSEL Lubbock．Tex． WXGI Richmond，Va． K」R Scattle，Wash． WKAL Charieston．W．V． WKAZ Charieston．W，Va．
WKTS Sheboygan．Wis． 960－312．3
\begin{tabular}{l|l}
10000 & CFAC Calgary，Alta， \\
10000 & CISNL Fort St．John．B．C
\end{tabular} KAGI Grants Pass，Orag． WCNR Bloomsburg．Pa． WSDN Aberdeen，S．O． KDET Center．Tex． KITE San Antonlo，Tex．
KENY Bellingham．Ferndale， Wash． 1

Ke．Weve Lengt
CHNS Hallfax，N．S．
CKWS Kingston．Ont CKWS Kingston，Ont． WBRC Blrmingham，
WMOZ Moblle．Ala WMOZ Moblle，Ala．
WCVQ Kodlak，Alaska WCVQ Kodlak，Alaska
KOOL Phoenlx．Ariz． KAVR Apple Valley，C
KNEZ Lompoc，Calli．
KABL Oaktand Callif KABL Oakland，Calif． WELI New Haven，Conn．
WGRO Lake City．Fla． WGRD Lake City，fla．
WJCM Sebring．Fla．
WIAZ Albany，Ga． W．P． Kc．Wave Leng
WRiP Rossville，Ga． W．P．鬲 5000 d
500 d
\(\mathbf{0 0 0}\)
WHAK Rogers City，Mich． 500 d KLTF Liftle Falls，Minn．
000 d 000 d
5000
5000
KFVG Cape Girardeau，Mo． KNEB Seottsblun．Nebr， KWEAV Plattsburo，N．Y．
WAAK Dallas，N．C．
WFTC Kinston，N．C．
WWS Wooster，Ohlo ．Y． WJAZ Albany，Ga．
WRFC Athens．Ga． KSRA Salmon，Idaho WDLM E．Moline，Itl． WSBT South Bend．Ind． KMA Shenandoah，lowa
WPRT Prestonsburg，Ky． WPRT Prestonsburg，K
KROF Abbeville，La．

 Sanvilie，
Sowell，
Lower \(\begin{array}{lr}\text { UPI Idaho Falls，Idaho } \quad 1000 \mathrm{~d} \\ \text { SGM Chester，III．} & 500 \\ \text { ITY Danvilic，Ill．} & 1000\end{array}\)
daho 500 d
000 d 5 owell，
tsego．
linneap
MeComt ich． 1000
5000 d nneapolis．Minn． 500
0000 1000 d
1000 d 1000 d
5000 5000
500 d 1000 d
5000 d ansas City．Miss． 1000 d
5000 d 1000
1000 d 10000
5000 5000
5000 d
1000 d 1000 d
5000 5000
5000 © Salem，N． 5000 d
1000 d
\(5000 d\)
\(1000 d\) 500
\(K G\)
\(K L\)

\section*{W}

WHYL Carlislo，Pa．
WADP Kane，Pa，
WATS Sayre。Pa．

\section*{WATS Sayro，Pa，
WBEU}

WBEU Beaufort．S．C．
WBMC McMinnvile． KIMP Mt．Pleasant．Tex．
KGKL San Angelo．Tex． KGKL San Angelo，
KOVO Provo，Utah WDBJ Roanoke，Va． KALE Rlchland．Wash
WTCH Shawano．WIs．
\(\begin{array}{ll}50000 & 970-309.1\end{array}\)

\section*{C}

CKCH Hull，Que．
50000
50000
50000
10000
10000
10000
5000
1
10000
1
1000

\section*{\begin{tabular}{l|l}
0 & KN \\
0 & KN \\
0 & KB \\
KC \\
\hline
\end{tabular} \\ \section*{K}}

KBHV Bakersfield，Callf．
KCHV Coachella
KBE
KBEE Modesto．Calif． WFLA Tampa，Fla． WVOP Vidalia，Ga． 5000 d KHBC Hilo．Hawall 10000 WAYT Rupert，Idaho
250d WAVE Loulsville．Ky．
\begin{tabular}{l|l}
\(1000 d\) & KSYL Alexandria，La， \\
10000 & WCSH Portland，Maine \\
5000 & WAAO Aberdeen，Md
\end{tabular}
1000 d WESO Southbridge．Mass．
1000 d WJAN Ishpeming．Milch．
1000 d
1000 d
1000 d
500 d

\section*{1000d}

\section*{1000 d
5000}

5000
5000

\section*{}

\section*{W \\ w} \begin{tabular}{lr}
WWW F Fayetto．Ala． & 10000 \\
WTW & 250 \\
\hline
\end{tabular} WTCB Flomaton．Ala． 1000 d KTKT Tucson，Ariz． 10000 K GUO Santa Barbara，Calif． 1000 d \(\begin{array}{ll}\text { KLIR Oenver，Colo．} & 1000 \mathrm{~d} \\ \text { WBZY Torrington，Conn．} 1000 \mathrm{~d}\end{array}\) WFAB Miami，Fla． W OWO Dawson．Ga．loond \(\begin{array}{ll}\text { WGML Hinesville．Ga，} & 250 d \\ \text { KTRG Honolulu．Hawail } & 5000\end{array}\) \(\begin{array}{lr}\text { KTRG Honolulu，Hawail } \quad 5000 \\ \text { WCAZ Carthage，lll．} & 1000 \mathrm{~d}\end{array}\) WITZ Jasper，Ind．lowa I000d \(\begin{array}{ll}\text { KAYL Storm Lako，lowa } 250 d \\ \text { KRSL Russell，Kans．} & 250 d\end{array}\) KRSL Rusself，Kans． WJMR New Orleans，La． 250 d KRIH Raywille，La．
WCRM Clare， WABO Waynesboro，Miss． 250 d KRMO Monett．MO． KSVP Artesia．N．Mox． 1000 WEEB Southern Pines，N，C， 5000 d
WJEH Gallipolls．Onlo \(\quad 1000 \mathrm{~d}\) \(\begin{array}{ll}\text { WJEH Gallipolls．Onio } & 1000 \mathrm{~d} \\ \text { WTIG Massillon，Dhlo } & 250 \mathrm{~d} \\ \text { KRKT Alhany．Oreg．} & 250 \mathrm{~d}\end{array}\) KRKT Alhany．Dreg．
WIBG Philadelphia．Pa．\(\quad 50000\) WVSC Somerset．Pa．\(\quad 250 d\)
WPRA Mayaguez．P．R． 10000 WLKW Providence，R，I． 50000 WAKN Alken，S．C．\(\quad\) WNOX Knoxville．Tenn． 10000 WNOX Knoxvile，Tenn． 1000 d \(\begin{array}{ll}\text { KTRM Beaumont．} \\ \text { KAML Kenedy．Tox．} & 2500 \\ \text { KA }\end{array}\) KNIN Wichita Falls，Tex． 10000 KOYL Tooele．Utah
WNRV Narrows，Va．lo00d WANT Richmond，Va． 1000 d WKLJ Sparta，Wis． 250

\section*{\(1000-299.8\)}

CKBW Bridgewater．N．8，\(\quad 10000\) KTOL Chitago Til．Okla． 50000 \(\begin{array}{ll}\text { KSTA Coleman．Tex．} & 2500 \\ \text { K } & 2500\end{array}\) KGRI Henderson，ex． WBNB Charlotte Amalle． KDMO Seatie．Wash．\(\quad 50000\)

\section*{1010－296．9}

CBX Calgary，Alta． \(50000 d\) \(\begin{array}{lr}\text { CFRB Toronto，Dnt．} & 50000 \\ \text { KCAC Phoenix，Ariz．} & 500 \mathrm{~d} \\ \text { KVNC Winslow，Ariz．} & 1000\end{array}\)
\(\begin{array}{lr}\text { KLRA Liftle Rock．Ark．} & 10000 \\ \text { KCH」 Delano，Callf．} & 5000\end{array}\)
KCMJ Palm Spros．Callf． 1000 KSAY San Fran．，Callf． 10000 d

CKNW New Wesiminster．Brit．Columbla 10000

\section*{WABZ Albermarle, N,C.
WFGW Black Mountain.}

WELS Kinston, N.C. WIOU Now Boston, Ohio KBEV Porland, Oreg WHIN Lewisburg, Pa WHON Gallatin, renn KOUY Savannah, Tenn KBUY Amarillo, Tex. KODA Houston. Tex KAWA Waco, Tox. WELK Charlottesvilla, Va, WMEV Marion. Va. WCST Berkeley Sprgs., W.Va. WSPT Stovens ri., Wis.
1020-293.9
KGBS Los Angeles, Callf. WCil Carbondale, \(1 l l\). WPEO Pcoria, Ill.
KDKA Pittsburgh, Pa.
1030-291.1
W82 Boston. Mass. W8ZA Springfield, Mass. \(\quad 1000\) KCTA Corpus Christi, Tex. 50000d 1040-288.3
KHVH Honolulu, Hawall KIXL Uallas, Tox.

\section*{1050-285.5}

CFGP Grande Prairie, Alta. 10000 St. Bonirace. Man. 10000 HUM Torento. Oit WCRI Scottsboro, Ala
KVWM Show Low, Ariz Kofy Sitle Rock, Ark WSO Wasco, Calif. <LMIO Longmont, Colo JSB Crestylew. Fis WHBO 7 ampa. Fla. WHMF Titusville, Fla WAUG Augusta, Ga, WBIE Marietta, Ga. WUZ Decatur, II KNCO Larden Cliy, Kans WNES Central CIty, \(k\) y. KCIJ Shreveport, La. KVPI Villa Platle, La. WPAG Silver Sprg... Md. KOH Pipestone, Aitinn ACR Columbus, Mlss KMIS Portagovilis. Mo
(SIS Sedalla, Mo
KLVC Las Vegas, Nev. WSEN Baldwinsvill. WSTS Massenasyile. N.Y. WHN Now York, N,Y. WLON Lincolnton. N.C WWGP Sanford, N.C. KCCO Lawton, Okl KUBE Pendleton, Oreg. KEED Springfield. Oreg. WBUT Butler, Pa. WLYC Williamsport, Pa WSMT Sparta, Tenn. KLEN Killeen, Tex. KWLD Liberty, Tex. KPLA Plainvlew, Tox. KCAS Slaton. Tox. WBRG Lynchburg Va WCMS Norfolk, \(V\) a. KNBX Kirkland, Wash Parkersburg, W. Va WLIP Kenosha wis. KWIV Douglas Wyo

\section*{1060-282.8}

CFCN Calgary, Alta KUPD Tempe, Ariz, KNAY Chico, Calif. WHFB Benton Harbor.
WMAP Monroe N.C. Mich loond WHOF Canton. On. WRCV Philadeluhia, pa

1070-280.2
CFAX Victoria, B.C. CHOK Sarnla. N.B Sirming KNX Los Angeles, Calif. WIBC Indianapolis, Ind.
KFDI Wichita, Kans.

Kc. Wavelength W.P.Ke. Wave Lenath W.P
N.c. Ooood WHPE Hignibal. Mo. WHPE High Point.
WMIA Arecibo, P.R. OUUd WFLI Lookout MIIn.. Tenn. 1000 WDIA Memphls. Tenn.
1000 KOPY Allice 1000 d
250 d 250 d WKOW Madison, Wis. 1080-277.6
5000 KSCO Santa Cruz, Calif. 1000 d WTIC Hartford, Conn. 0000d WKLO Loulsvillc. Ky. WOAP Owosso, Mich. WUFO Amherst, N.Y.
5000 d WUFO Amherst, N.Y. kwjJ Portland, Oreg.
1000 d WYRE Pittsburgh, Pa.
KRLD Dallas. Tex,
50000
1000 d
10000
1000 d
1
50000
1090-275.1
CHEC Lethbridge, Alta. CHIC Brampton. Ont. IKAAY Little Rock. Ark. \({ }^{\text {III. }}\) Ark KHAI Honolulu, Hawail WBAL Baltimere WILD Bastomore, Md WHUS Boston, Mass. WAJS San German P.R. KING Seattle. Wash. 1100—272.6
KFAX San Francisco, Calif. 50000 WLBE Carrollton. Ga. \(\quad 250 \mathrm{~d}\) KYW Cleveland, Ohio
WGPA Bethlehem.

\section*{\(1110-270.1\)}
\(1000 d\)
\(1000 d\) 1000 d
1000 d
1000
0

2500d
1000 d
1000 d
250d
500d
500 d
5000 d
500 d
250 d
1000 d
1000 d 500 d
La. 2 \(250 d\)
\(250 d\) 1000 d
1000 d
5000 d
5000 d
1000 d
\(1000 d\)
\(1000 d\)
250 d 250d 000 d 5000d 250 d1000d

50000
000 d 1000d 000d 250d 1000d 1000 d \(1000 d\) 1000d \begin{tabular}{ll}
10000 \\
\(000 d\) & WSIV Pekin, Idaho \\
\hline
\end{tabular} 1000d
250 d ISOO Sloux Falls. S, Dak. 10000 000d KORC Mineral Wells. Tex. WRVA Richmond, Va. 50000

\section*{\(1150-260.7\)}

\section*{250d 1000 d} 1000 d 000d CHSJ Saint lohn, N.B. Alta. 10000 000d CKOC Hamilton, Ont. \(\quad 10000\) CKX Brandon, Man. CKTR Three Rivers, Que.
WBCA Bay MInette, Ala. WGEA Geneva, Ala. WJRD Tuscaloosa. Ala KCKY Coscaloosa. Ala. 5000 KXLR No. Little Rock. Ark. 5000 \(\begin{array}{ll}\text { KFSG Los Angeles, Callit. } & 2500 \\ \text { KRKD }\end{array}\) KJAX Santa Rosa, Calif. 5000 KGMC Englewood, Colo. 1000 d \(\begin{array}{ll}\text { WCNX Middlotown, Conn. } 500 \mathrm{~d} \\ \text { WDEL Wilmington. Del. } & 5000\end{array}\) WNDB Daytona Bich., Fla. 1000 WTMP Tampa, Fla. WFPA Fort Valley, Ga, 1000 d
WIEM Valdosta, Ga, WGGH Marion. Ill. WJRL Rockford, III. KWKY Des Molnes,
KSAL Salina, Kans. Iowa

5000d

\section*{10000
50000} 5000 50000 50000
1000 d 10000

.P. 50d 1000d 1000 d \(1000 d\)
\(5000 d\) 5000 d
1000 d 1000d 000d 1000 d
1000 d 50000
250 d
000 d
10000
50000 KNED McAlester, Okla.
KAGO Klamath Falls, Oreg. 1000 d 1000 1000 d
1000 d 1000 d
1000 d 250 d 1000 d 250d 250d
\(000 d\) 5000d 250d 500d

Kc. Wave Length W.P,|Kc. Wave Length

KCOB Newton, Lew WCPM Arkansas City. Kans. WCPM Cumberland, Ky. KWCL Oak Grove. La. WEIM Fitchburg. M
WFYC Alma, Mich. W.TCN Minneapolis. Minn. KVOX Moorhead, Milinn.
KDKD Clinton, Mio KDKD Clinton, Mo KYRO Patosi, Mo. KCNI Broken Bow, Nebr. KTOO Henderson, Nev. KRZE Farmington, N. Mox. WADD New York, N.Y.
WROC Rochester, N.Y. WSAT Sallsbury, N.C. W YAL Scotland Neek. N.C. WONW Deffance, Dhio WLMJ Jackson. Ohlo KLCD Poteau, Okla. KERG Eupene, Oreo. WBRX Berwick, Pa. WHVR Hanover, Pa WKST Now Castle, Pa WCMN Arecibo, P. R.
WANS Anderson, S.C. WJAY Mullins. S.C. WMCP Columbla, Tenn. WDNT Dayion, Tenn. KNIT Abilene, Tex. KWHI Brenham, Tex.
KLUE Longview, Tex. KRAN Morton, Tex. KVWG Pearsall, Tex. KNAK Salt Lake City. Utah WKDE Altavista, Va. WYVE Wytheville Va. KIT Yakima, Wash. WNAM Nethond, Wis.

\section*{1290-232.4}

CFAM Altona, Mar, HG Jackso Ala WSHF Sheffield, Ala. WMLS Sylacauga, Ala, KCOS Fiagstaff, Ariz. KCUB Tueson, Arlz. KDMS EI Dorado. Ark. KUOA Siloam Spros., Ark. 5000 s 00 d KHSL Chico. Callf. KPER Gilloy Callf.
KMEN San Bernardin

Callfornla 5000
KACL Santa Barbara, Callf. 5000d WCCC Hartford, Conn. WTMC Ocala, Fla 500 500 d 5000
500 d
K 1000 d
5000 d
5 s. 1000 d

\section*{5000}

\section*{10000}

5000
1000
1000
1000
\[
\begin{aligned}
& 100 \mathrm{~d} \\
& 100 \mathrm{~d} \\
& 1000
\end{aligned}
\] \begin{tabular}{l|l|l}
0000 & K \\
0 & \\
000 & K
\end{tabular} 500 d
5000

WIRK W. Palm Beh., Filarid WDEC Amerlcus, Ga. WCHK Canton, Ga. WTOC Souvanaih, Ga. KSNN Pocatello, Idaho WIRL Peoria. III. WCBL Benton, Ky. WHGR Hounhton Lake, Mien. WNIL Niles. Mich. WOIA Saline. Mich.
KBMO B B
Benson, MIIn. WBLLE Batesyille, Miss. KALM Thayer, MO. KGVO Missoula. Mont. KOIL Omaha. Nebr.
WKNE Keene, N.H. KSRC Socorro: N.M. WGLI Babylon, N.Y. WNBF Binghamfon, N.Y.
WEYE Sanford, N.C. WOMP Bellalre, Ohio WHIO Dayton. Ohio KUMA Pendleton. Ores. WFBG Altoona, Pa. WICE Providence, R.I. WATD Oak Ridose, Tenn. KBLT BIa Lake. Tex KRGV Weslaco, Tex. KTRN wichita Falls. Tex. KTRN Wichita Falls. Tex. 5000 WAGE Colonial Hots., Va. 5000 d WAGE Leesburg. Va. WVOW Logan. W.V KAPY Port Andeles. Wash. WMIL Milwaukee. Wis. 1000 d
WCOW Sparta KOWB Laramle, Wyo 5000 d

\section*{1300-230.6}

CBAF Moncton, N.B.
CJME Regina, Sask WBSA Boaz, Ala
WTLS Tallastee, Ala.
WEZQ Winfleld, Ala. Fia.

5000
500 d
5000 잉ㅇㅇㅇㅇㅇ

5000 K
5000
1000
h. 500
-8.5000 d5000
5000
1000500d

1000 d KWCB Searcy, Ark. 1000 KRDP Brawley. Cailf. 000d KYNO Frawley, Calif. 5000 KWKW Pasadena, Callp. 500 d KVOR Colo. Sorgs.. Colo. 5000 WAVZ New Haven, Conn. 1000 d WRKT Cocoa Beach, Fla. 5000 W 1000 WSOL Tampa, Fia 0000 W WMTM Moua, FIa. 500 d WNEA Nowman, Ga. 1000d WIMO WInder, Ga. 5000 d
5000 d KOZ Lewiston, Idaho 5000 WFRX W. Frankfort, III. 5000 d WH LT Huntington, ind, 1000 WMLFT Terre Haute, Ind. N.C. 5000 d KGLD Mason CIty. lowa 1000 WBLG Lexington, Ky. 1000 d KANB Shreveport, La, 5000 WFBR Baltimore, Md. 5004 WJDA Quinty, Mass. 5000 WDOD Grand Ranlds. Mich. \begin{tabular}{l|l}
1000 & WRBC Jackson. Miss. \\
5000 & KMMO Marshall, Mo. \\
5000 & KBRL MeCook. Nebr.
\end{tabular} 5000 d KPTL Carson Clty, Nev. 1000 d WAAT Trenton. N.J. 1000 d WOSC Fulton. N. Y. 1000 d WEEE Rensselaer, N. Y. 1000 d WGOL Galdsboro. N.C. 응
\begin{tabular}{r|r}
5000 & WHEP Foley, Ala. \\
500 d & CHGB St. Ane.de.la.P \\
5000 \\
1000 d & WJAM Marion, Ala, Qu \\
1000 d & KBUZ Mesa, Ariz. \\
1000 d & KBOK Malvern, Ark,
\end{tabular}
1000 d KBOK Mesa, Ariz.
5000 K10T Barstow, Callf. 5000 KPOD Creseent City, Calif.
 \begin{tabular}{l|l}
500 d \\
500 d \\
WAUC Deland, Fla. \\
WRO Whenula, Fia.
\end{tabular} 500d WBRO Waynesboro, Ga. 1000 d KNUI Makawao. Hawaif 1000 d KLIX Twin Falls, Idaho WISH Indianapolis,
KDLS Perry,
KOKX
KOK K KOKX Keokuk, 1owa WTTL Madisonville, KY.
WDOC Prestonsburo, Ky. KIKS Sulphur, La. KUZN W. Monroe, La,
WLOB Portand, Maine
WORC Worcester, Mass. WORC Wortester, Mass.
WKMH Dearbern, MIeh. WCCW Traverse City, Mich. KREI St. Peter, Minn.
WXXX Hattieshurg. Mis
KK KFSB joplin. Mo. KFBB Great Falls, mont
KGGMT Falrbury, Nebr.
WJLK Asbury Part. WJLK Asbury Park. N.J.
WCAM Camden, N.J.
KARA Albuduergue. N.
WVA Albuquerque. N. M
WVIP Mt. Kiseo, N.Y.
WTLB Usicsile.
WTLB Uitica, N.Y.WISE Ashevilte. N.C.
WKTC Charlotie, N.C.WTIK Durham. N.C.N.Dak.
WFAH Allianee, Ohio N.Dak. 5000
wWGFD Bediord, Pa.WGSA Ephrata, Pa.
5000 WDKD Warren, Pa.
\begin{tabular}{lll}
\\
1000 & WDOD Kingstree, S.C. 5000 d \\
\hline
\end{tabular} 1000 WDOD Chattanooga, Tenn. 5000
lo00d WBNT Onelda, Tenn.

5000 WBNT Oneida, Tenn. KZIP Amarlllo. Tex
WRR Dallas, Tex.
W.P

Kc. Wave Length
WEEL Fairfax, Va.
WGH Now oort Nows, Va.
KARY Prosser, Wash.
WIBA Madison, Wis.
\(\mathbf{1 3 2 0 - 2 2 7 . 1}\)
CHQM Vancouver, B.C.
CKEC Now Glasgow, N.S.
CKSD Sorel, P.Q.
CKKW Kilchener, Ont.
WAGF Dothan, AIA.
WENN Birmingham, Ala.
KBLU Yuma, Ariz.
KWHN Fort Smith, Ark.

vilio. 250
1000
1000
1000
\(\mathbf{w}\)
\(\mathbf{w}\)
\(\mathbf{w}\)
\(\mathbf{w}\)
\(\mathbf{w}\)
\(\mathbf{w}\)
\(\mathbf{w}\)
\(\mathbf{w}\)
\(\mathbf{k}\)
wis. 5000 5000 d
500 d
1000 d 1000 d
1000 d
1000
1000
5000
5000
0
500 d
1000 d
\(500 d\)
\(5000 d\)
5000 d
500 d5000d
1000 d
5000 100001000d
1000 d
1000 d
5000
5000\(250^{\circ}\)
1000 d

1000
5000
1000
1000

\section*{1000
1000
5000}

WGH Now Dort News, Va.
KARY Prosser, Wash, WIBA Madison, wis 1320-227.1

5000 d

\section*{5000 d}
1000d
5000
1000d
500 d
KRLW Walnut Rid
KHSJ Hemet, CalipKLAN Lemoore. Calif,KCRA Sacramento CallifKAVI Rocky Ford, Colo.WATR Waterbury Conn.WGMA Hollywood, Fla.WZOK Jacksonville, Fla.WAMR Venice, FlaWHIE Griffr, Ga.WKAN Kankakee, IIKNA K noxville, lowaKMAQ Maquoketa, JowaWBRT Bardstown, Ky.WNGD Mayfeld, Ky.KHAL Homer, La.WARA Allisbury, Md.WILS Lanslng. MasWDMS Marguctie Mleh.WRJW Plcayune, Mich.KXLW Clayton, MoKXLW Clayton, MoWWHG Hornell. iN Nebr.WQSR Solvay, \(N . Y\).wagy Forest Clity. N.CWCDG Greensbaro. N.C.WKRK Murphy, N.C.C.WODY Washington, N.C
WHOK MInot, N.Dak.
KWOE Lancaster. Dhio
KWOE Clinton, Okla.
WKAP Allentown Ore.
WGET Gettysburg, Pa
WJAS Pittsburgh, Pa.
WUNO RIO Pledras.
WOIC Columbla, S.C.
KELO Sloux Falls. S. Dak
WMSR Manehester. Tenn.
KVMC Colo. City, Tex
KCPX Salt Lake City, UtahWEET RIchmond, Va.KEET Richmond, Va,KXRO Aberdeen, Wash.
KHIT Walla Walla. Wash.WQMN Superlor, Wis.
WFHR Wisconsin Rapids.
1330-225.4
WROS Seottsboro, Ala.
KMOP Tucson, Ariz,
KVEE Conway, Ark.
KLPC Lompoc, Calit.
KFAC Los Angoles. Calir.
KLBS Los Annos, Calif.
KAHR Redding, Calif.
WARN Ft. Plerce, Fla.
WYSE Lakeland, FIa
WEBY Mllton, FIa,
WMEN Tallahasseb, Fla.
WMLT Dublln. Ga
WRAW Evanston, ill.
WRAM Monmouth, III.
WJPS Evansville, ind
WJPS Evansville, ind.
KFH Wichlta. Kans.
WYGO Corblin. Ky.
WMOR Morbln, Ky.
K MOR Morehead. K
WASA Lafayette. La.
WCRB Waltham. Mass.
WTRX Flint, Mieh.
WLOL Minneavolls, minn.
WJPR Greenville, miss.
WDAL Meridian, Miss.
KUKU Will
\begin{tabular}{llr}
WOAL Meridian, Miss. & 10000 d \\
KUKU Willow Springs, Mo. & 1000 d \\
KGAK Gallup, N. Mex. & 5000 \\
\hline
\end{tabular}
KGAK Gallup, N. Mex.
WEVD New York. N. Y.
WPOW New York. N.'
WPOW New York.
WEBO Owego, N.Y.
WHAZ Troy, N.Y
WHAZ Troy, N.Y.
WUSM Havelock, N.C
WHOT Campbell, Ohio
WFIN Findlay, Ohio
W KOV Wellston, Ohlo
WELW Willoughby, 0.
WELW Willoughby, 0.
KPOS Portland, Oreg.
WBLF Bellefonte, Pa.
WICU Erle, Pa
WICU Erle, Pa.
1000 d WFBC Greenville. S.C.
1000 d WAEW Crossville, Tenn.
5000 WAEW Crossville, Tenn.
\begin{tabular}{r|r}
5000 & WTRD Dyersburg. Tenn \\
1000 d & KMIL Cameron, Tex.
\end{tabular}
1000d
 1000
5000
1000 d
Ke. Wove Length
KINE Kingsville, Tex.
KVKM Monahans, Tex,
KDOK Tyler, Tex.
WBTM Danville, Va,
WRAA Luray, Va,
WOLD Marlon, Va.
WESR Tasley, Vi,
KFKF Bellevuo, Wash,
KCFA Spokane, Wash.
WETZ New Martinsville,
WHBL Sheboygan, wis.
W.P.
1000 d
5000
1000 d
5000
5000
\(1000 d\)
\(1000 d\)
\(1000 d\)
1000 d
1000 d
5000 d
CKEC New Glasgow, N.
CJSD Sorel, P.Q.
CKKW Kilchener,
 .Va. 1
 100 d
1000
WAGF Dothan, Ala. 1000
WHBL Sheboygan, wis. \(\quad 1000\)
KDVE Lander. Wyo. 5000
\(1340-223.7\)

Re. Wave Length W.P. Kc. Wave Length WDCR Hanover, N.H WMID Attantic City, N.J. KNDE Aztec, N.Mex.
KRRR Ruidoso, N.Mex KKIT Taos, N.Mex. KSIL Sliver City. N. Mex WENT Gloversvilio WENT Gloversville, N.Y. WUSJ Lockport. WASA Massena, N. WALL Middetown, N. Y
WIRY Plattsburgh,
N. \(Y\). WJRI Lenoir, N.G.
WTSB Lumberton, N.C. WDXF Oxtord, N.C.
WOOW Greenville, N.C. WGNI Wilmington, N.C. KGPC Grafton. N.Dak WNCO Ashland, Ohio
WOUB Athens, Ohio WIZE Springfield Ohio KIHN Hupo, Okle. Ohio KIHN Hupo, Okla.
KOCY Okla. City, KOCY Okla. City, Okia. KWVR Enterprise, Orea. KIHR Hood River, Oreg.
KFIR North Bend, Oreg. WCVI Connellsville, Pa.
WSAJ Grove City, Pa. WSAJ Grove city \({ }^{\text {W }}\) P WHAT Philadelphia, Pa.
WRAW Reading; Pa.
WTRN Tyrone, pa. WBRE Wlikes-Barre, Pa, WWPA Wailiamsport. Pa
WORF Agualia, P.R.
WOKE Charleston, S.C. WOKE Charliston, S.C
WRHI Rock Hill. S.C. WSSC Summ S.C
KIJV Huron, S.D.
KRSD Rapid City, S.Dak.
WBAC Cloveland. Tenn.
WBAC Claveland. Tonn. WGRV Greencville Tonn WKGN Knoxville, Tenn. WCOT WInchester, Tenn KWKC Abllene, Tox KAND Corsicana. Te KLBK Lubbock, Tox KRBA Lufkin. Tox
KPDN Pampa. Tex
KOLE Port Arthur, Tox. KTEO San Angelo, Tox.
WTWN St. Johnsbury, WSTA Chirlotto Amalio, V.I
WHAP Hopewell, Va.
WJMA ORAD日e \(V\).
KAGT Anacortes, Wash. GGPA Paym. W
KMEL Wenatchi. Wash. WHAR Clarksburg. W.V. WEPM Marilinsburg, W. Wa. WOVE Woleh, W.V. WRIT Ladysmith. Wis KSGT Jaekson. Wyo. KYCN Wheatiand, Wyo.
1350-222. I
CHOV Pembroke. Ont CKLB Oshawa, Ont. CKEN Kentrilie, N.S. WELB Elba, Ala, Ala, KLYD Bakersfield, Callf. 100 KSRO Santa Rosa, Calif KGHF Pueblo, Colo. WINY Putnam, Conn. WEZY Cocoa, Fla. WDCr Oade City, Fla. WRWH Cleveland, Ga. WRPB Warner Robins, WAAP Peorla, ill. WJBD Satem, III. WIOU Kokomo, ind. KMAN Des MoInes, Lowa WLOU Loulsvilte. Ky. WDEA Ellsworth Mo L WHMI Howell, Mith. KDIO Ortonvilie, Minn, WCMP Pine Clity, MInn. WKOZ Kosciusko, Mlss, KCHR Charleston, Mo, KBRX O'Nelll, Nebr. WLNH Laconia, N.H. KABQ Albuqueraue, N.M. WREA Corning, N.
WBMT Blaek Mountain, N.C. 50

1000 WHIP Mooresville, N.C. 1000 WLLY Wilson, N.C. 1000 KQDI Bismarck. N.D. WADC Akron, Ohlo 250 WCSM Celina, Ohlo 000 KRHD Dunean, Okla. \begin{tabular}{l|l}
000 & KTLQ Tahlequah, Okla, \\
250 & KRVC Ashland, Ores.
\end{tabular} 250 KLoo Corvallis, Orej. 1000 WORK York, Pa, 1000 WDAR Darlinaton, S.C.
1000
WGSW Greenwood, S.C. 1000 WGSW Greenwood, S.C. 000 KCAR Clarksville, TCX 000 KTXJ Jasper. Tex. 000 KCOR San Antonio. Tex. WFLS Frederieksburg, Va. WNVA Norton, Va. WAVY Portsmouth, Va,
WPDR Portage, Wis.

\section*{\(1360-220.4\)}

\section*{WWWB Jasper, Als.
WLiQ Mobile, Ala.} WMFC Monroevilil. Ala, KRUX Glonoke, Ala. KLYR Clarksvilile, Ark
1000
1000 d
00 KFFA Halena, Ark. KRCK Ridgecrest, Calif. KGB San Diego, Calif. WORC Hartford, Con WOBS Jacksonville, Fia.
WKAT Miaml Beaeh, F
WSFR Sanford Fial WINT Winter Haven, WAZA Bainbridge. Ga. WMAC Metter, Ga. WLBK Rome. Ga, WVMC MK. Carmel, I,
WGFA Watseka, Ii, KXGi Ft. Madison, lowa KSC Sloux City, lowa WFLW Monticello, Ky KVBC Mansfield, La KTLD Tallulah. La. WEBB Dundalk, Md WWRO Caro, Mleh. WKMI Kalamazoo. Mich. KWRV MeCook. Nebr.
WNNJ Nowton. N. WWBZ Vineland, N.J. WKOP Binghamton, N.Y. WCHS Olean, N.Y. KEYZ Wlilliston, N. D.C WSAI Cincinnati, Ohi KUIK milisboro, Ore9. WPQR MeKeosport. Pa WPPA Pottsvillo. Pa
1000 WELP Easley, S.C. 0 WNAH Nashville, Tenn. KACT Andrews, Tex. KWBA Baytown, Tox KRYS Corpus ChristI. Tex
KXOL Ft. Worth. Tex.
1000
1000
0000 WHBG Harrisonburo, Va, K MO Tacoma, wash. WHIC Matawan, W.V WMOV Ravenswood, W.Va WBAY Green Bay, Wis. WISV Virouqua, Wis. KVRS Roek Springs, wyo.

\section*{1370-218.8}

WBYE Catera, Ala.
500d KTPA Prescott, Ark. KBUC Corona, Calit KEEN San Jose. Calif. KGEN TUlare. Calif. WKOS Ocala, Fla, WCOA Pensacola, Fla, WBGR Jesup, Ga. WBGR Jesup, Ga. WFDR Manchester, Ga. WREE Washington. WTTS Bloomington 000d W GRY Gary, Ind. 5000 K KGNO Dodoe City K 5000 K K GNO Dodge City.
1000 d K ALN Diola, Kans. 1000 d WGOH Graysons.
\begin{tabular}{l|l}
\\
50000 \\
WTKY Grayson. Ky \\
Wompkinsvilio, Ky.
\end{tabular} WT KAPB Marpknsvillo, WMHI Braddoeks His, Md
W000 WKIK Braddoeks His., Md. 500 d
000 d
500 d
W.P

1000 d 1000 5000
500 d
500 d
2000
1000 d
1000 d
5000
1000
1000
1000
500
1000
500
1000
500
500
50 5000
5000 d

50000
10000
5000
5000
500 d
1000
1000
1000
 o.
.
Y.
? 1000 d
1000 d
1000 d
5000
500
1000
500
5000
1000
1000
1000
1000
1000
1000
5000
500 d
1000 d
1000

5000
1000
1000
5000
1000
1000
500
1000
1000
1000 d
000 d
5000
1000

1000 d
1000
\(500 d\)
ㄴ
-
1000 d
500 d
5000 d
5000
5000
10000
5000
000 d
000 d
0000 d
\(1000 d\)
1000 d
\begin{tabular}{l|l}
5000 & C \\
\(000 d\) & W
\end{tabular}
\begin{tabular}{l|l}
\(000 d\) \\
5000
\end{tabular}

500 d KGER
5000 d KCEY Turtoek, Calif.
000 d KFML Denver, Colo.
WPUP Galnesville, Fia
WGES Chicago
WGES Chicago, Ili.
Kc. Wave Length WDOB Canton, MIss. KCRV Caruthersvilie, Mo. KXLF Butte, Mont. KAWL York, Nebr, WFEA Manchester, N.H,
WALK Patchogue, N,, KFJM Grand Forks,
WSPD Toledo, Ohio KAST Astoria, Oreg WOTR CORry, Pa KFRO Longviow. Tex KUKO Post, TAX. WHEE Martinsvillo, Va. KPOR Quinty, Wash.

\section*{1380-217.3}

CFDA Victoriaville, Que. CKPC Brantford, Ont.
CKLC Kingston, Ont. WRAB Arab, Ala. KBVM Laneaster, Callf. KGMS Sacramento, Cali
KSBW Salinas, Callif. KSBW Salinas, Callf.
WW
W
KPOI Honolulua, Hall
WB2I Brazil, Ind.W
\[
\begin{aligned}
& \text { NKTA Farmington, Mo. } \\
& \text { NTTH Port Huron, Mich } \\
& \text { NPLB Greanville, Mleh. }
\end{aligned}
\]

\[
\begin{aligned}
& \text { KLIZ Bralnerd, Minn. } \\
& \text { KAGE Winona, Minn. }
\end{aligned}
\]
\[
\begin{aligned}
& \text { KAGE Winona, Minn, } \\
& \text { WDLT IndIanola, Miss, }
\end{aligned}
\]
\[
\begin{aligned}
& \text { WDLT Indlanola, Miss, } \\
& \text { KUDL Kansas City, Mo, }
\end{aligned}
\]

WAVP Avon Park. Fla

500d WYNR Chicago. III. WALK Patchogue, N.Y.
WSAY Rochester, N.Y. WSAY Rochester, N. Y
WLTC Gastonla. N.C. WTAB Tabor City, N,C.
KFJM Grand Forks, N.D.

WKMC Roaring Spros., Pa. WIVV Vieques, P.R.
WKFD Wiekford, R.I. WDEF Chattanooga. Tenn. WRGS Rowersvilio. Tonn.
KOKE Austin, Tox. KSOP Salt Lake City, Utah
WBTN Bennington, Vt. WCCN Neillsville, Wis. WGYV Greenvilio, Ala.
KDXE N. Littlo Rock, Art WAMS Wilmington, Dol,
K
K

K

K
W
WBBX Portsmouth, Nobr.WAWZ Portsmouth. N.HWFSR Bath, N.Y.
WTOB Asheville, N.C. W.C
WTOB Winston-Salem
WWIZ Lorain, Ohio
WPKO Waverly, Ohio
KSwO Lawton, Okla
KMUS Muskoges, Okla.
KBCH Ocean Lake, Or
KSRV Ontario, Ores.
WACB Kittanning,
WMLP Milton, Pa
WNRI Woonsocket R
WAGS Bishopville, S.
WGUS N, Aupusta, S.C.
KOTA Rapld Cliy. S.Oak.
KFCB Redfeld, S. Dak.
WYSH Clinton, Tenn.
WGMM Millington, Tenn.
BWD Brownwood, Tex
CRM Crane, Tex.
KMUL EI Paso, T
KMUL Muleshoe, Tex.
WSYB Rutland,
WMBG Rlichmond,
KRKO Everott, Wash.
KPEG Spokane, Wasn.
WMTD Hinton, W.Va.
BEL Belolt. W
390-215.7
KLN Nelson, B.C.
HMA Anniston. Ala.
\begin{tabular}{|c|c|c|}
\hline W.P. & Kc. Wavelength & W.P. \\
\hline 1000d & WJCD Seymour, Ind. & 1000d \\
\hline 1000 d & KCLN Clinton. Iowa & 1000d \\
\hline 1000d & KCBC Des Molnes, Iowa & 1000 \\
\hline 5000 & KNCK Concordia, Kans. & 500 d \\
\hline 500 d & WANY Albany, Ky. & 1000d \\
\hline 5000 & WKIC Hazard, KY. & 5000 d \\
\hline 500 d & 'KFRA Franklin, La. & 500d \\
\hline 5000 & WEGP Prosque 1slo, Me. & 5000d \\
\hline 5000d & KJPW Waynesville, Mo. & 1000 d \\
\hline 5000 d & WCAT Orange, Mass. & 1000 d \\
\hline I000d & WPLM Plymouth, Mass, & 5000 \\
\hline 5000 & WCER Charlotte, Mleh. & \(1000 d\) \\
\hline 1000 & KAOH Duluth, Milnn. & 500 \\
\hline 1000 & KRFO Owatonna, MInn. & 500d \\
\hline 1000d & WROA Gulfport, Miss. & \(1000 d\) \\
\hline \(1000 d\) & WQIC Meridian. Miss. & 5000 d \\
\hline 1000 & KJPW Waynesvilio, Mo. & 1000d \\
\hline 500 d & KENN Farmington. N. Mex. & 5000 \\
\hline 5000 & KHOB Hobbs, N. Max. & 5000 d \\
\hline 1000d & WEOK Poughkeepsie, N.Y. & 5000 d \\
\hline 1000 d & WRIV Rivertiead, N.Y & 1000 d \\
\hline 1000 d & WFBL Syracuse, N.Y. & 5000 \\
\hline 1000 & WEED Rocky Mount, N.C. & 5000 \\
\hline 500d & WADA Sholby. N.C. & 500 d \\
\hline 1000d & WJRM Troy, N.C. & 500 d \\
\hline 1000 d & ILPM Minot, N. Dak. & 5000 \\
\hline 5000 d & WOHP Bellefontalne. Ohlo & 500 d \\
\hline 5000 d & WMPO Middieport. Pomroy. & \\
\hline 1000d & Ohio & 1000 d \\
\hline 1000 d & WFR」 Youngstown, Ohlo & 5000 \\
\hline 5000d & KCRC Enid, Okla. & 1000 \\
\hline 1000 & KSLM Salem, Ores. & 5000 \\
\hline & WLAN Lancaster, P & 5000 \\
\hline & WRSC Stato Colloge, Pa. & 1000 d \\
\hline & WISA isabolla, P.R. & 1000 \\
\hline 1000 & WHPB Belton, S.C. & 500 d \\
\hline 10000 & WCSC Charleston, S.C. & 5000 \\
\hline 1000 d & KJAM Madison, S.D. & 5000 d \\
\hline 1000 d & WTJS Jackson. Tenn. & 5000 \\
\hline 1000 d & KULP El Campo. Tex. & 500 d \\
\hline 1000 d & KBEC Waxahachle. Tex. & 500 d \\
\hline 1000 & KLGN Logan, Utah & 1000 \\
\hline 5000 & WEAM Arlington. Va. & 5000 \\
\hline 1000 d & WWOD Lynchburg, Va. & 5000 \\
\hline 5000 & KBBO Yakima, Wash. & 1000 \\
\hline 500d & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\[
1400-214.2
\]}} \\
\hline 1000d & & \\
\hline
\end{tabular}

CKDH Amherst, N.S. \(\quad 250\)
CJFP Rivlere.du. Loup, Que. 1000 50001000
250
CKDH Amherst, N.S.
CJFP Rivlere-du. Loup, Que.
CKRN Rouyn, Que.
CKSW Swift Current, Sask.
WMSL Decatur, Ala.
WMSL Doeatur250
WXAL Domopolis, Ala. 1000 d
WJLD Homewood, Ala.
KSEW Sitkar. Ala. KCLF Sitka, AlaskaKJKJ Clifton, Ariz.KJKd Flanstaff, Ariz.
KXIV Phoonix, ArizKXIV Phoonix, Ariz.
KTUC Tucson. Ariz.KTUC Tucson, Ariz.ํㅓㅇ్ㅕㅇ
KELD EI Dorado, Ark. - NinKCLA Pine Bluff,
Ark.
Ar
Alif KRE Berkeley, CaliKREO Indio, Callf.
KQMS Redding. Calif.KQMS Rodding, Calif.
KSLY San Luis Obispo, Cal.
KSPA Santa Paula. Calif.250
250
KHOE Truckee Calif. 응웅
KONG Visalia. Calif.KONG Visalia. Calif.
KRLN Canon City, ColoKDTA Delta. Colo.
KFTA
Kt. Moroan, Colo.
KBZZ La Junta, Colo.KBZZ La Junta, Colo.

Kc. Wave Length WHDF Houghton. Mlch. WMAB Munising, Mich. WSJM St. Joseoh Milich WTCM Traverse City, Mich. KMHL Alarshall KTWN M pls..St. Paul, Minn. WHLB Virginja, Minn. W B B Boonevilie. M/ss. WFOR Hatties burg. Miss WJQS Jackson. Miss. KFRU Columbia, Mo, KJCF Festus, Mo,
KSIM Sikeston. Mo.
, KARR Great Falls, Alont, KCOW Alliance, Nebr, KLIN Lincoln. Nebr, KBMI Henderson, Nev. WBAL Berlin. N.H. WTSL Hanover, N.H. KTRC Santa Fe. N. Mex.
KCHS Truth or Consequences
KTNM Tucumeart. Now. Mex. WOND Pleasantvilie, N.J. WABY Albany, N.Y. W WLB Ogdensburg, N. Y. WBAA Beaufort. N.C. WGBG Greensboro. N.C
WSIC Statesvilte, N.C. WLSE Wallace. N.C. WCNF Weldon. N.C. KEYJ Jamestown, N. Dak. WMAN Mansfield, Ohio WPAY Portsmouth, Ohio KWON Bartlesville. Okla KNOR Norman, Okla, KNND Cottage Grove
WEST Easton. Pa. WEST Easton, Pa WHET Erla, Pa. WKBI St. Marys, Pa. WICK Seranton. Pa, WRAK Williamsport, WTN Georgetown. WGTN Georgetown. S.C. WJZM Clarksville, Tenn. WHUB Cookeville, Tenn. WLSB Copper Hlll, Tenn. WGAP Maryvilie, Tenn. WHAL Shelbyville, Tenn.
KRUN Ballinger, Tex. KBYG Big Spring, Tox KUNO Corpus Christi, Tex
KILE nr. Galveston. Tex. KILE nr. Galveston. Tox.
KGVL Greenville. Tox. KEBE Jacksonvilio, Tox. KEYE Perry, Tex, KEYE Perryton, Tex.
KYOP Plainviow. Tex. KVOP Plainview. Tex.
KOWT Stamford, Tex. KTEM Temple, Tex. KTFS Texarkana, Tex. KVOU Uvalde, Tex
WDOT Burtington, \(V t\). WHHV HIllswlle Va, Va WHIH Portsmouth, Va WHLF So. Boston, Va. WINC Winchester. Va. KEDO Longyiew, Wash KTNT Tacoma. Wash WBOY Clarkesburg. W, Va, WRON Ranceverte, W.Va. WSPZ Spencer, W.Va. WKWK Whoelling, W.Va. WBTH Willamson, W.Va WATW Ashland, Wis. WBIZ Eau Claire. Wis. WRJN Green Bay Wis. WRDB Reedsburg, wI WRIG Wausau. Wis. KATI Caspar. Wyo. KODI Cody, wyo.

\section*{1410-212.6}

CFUN Vancouver, B.C. CHLP Montreal. Que. WALA Moblle, Ala.
KTCS Fort Smith, Ark.
KERN Bakersfield. Calif KERN Bakersfield.
KRML Carmel. Calif. KKOK Lompoc, Calit KMYC Rrarysville, Callf. KCAL Redlands, Calif,
KCOL Ft. Collins. Colo. WPOP Hartford, Conn. WDOV Dover. Del. WMYR Fort Myers, Fla.
WBIL Leesburg. Fia. WRFB Tallahassee, Fla

W.ONNNDNNN Ke. Wave Length
WRIX Grlfin, Ga,
WSNE Cummings, Ga.
WDAX MCRae, Ga.
WLAQ Rome, Ga.
WRMN EIgin, Ili.
WTIA Taylorville, Ill.
WAZY Lafayette, Ind.
KGRN Grinnell, Iowa KLEM LeMars, Iowa KCLO Leavenworth, Kan
KWBB Wichita, Kans. WLBJ Bowling Green
WHLN Harlan Ky KDBS Alexandria. WDDW Halfway, Md. WHAG Halfway, Md. WGRD Grand Rap., Mich. KLFD Llichfield, Minn. WDSK Cleveland MIss. KNOP N. Platte, Neb WHTG Eatontown. N.J. WDOE Dunkirk, N, Y
WELM EImira, N.Y. WSET Glen Falls, N.Y. WEGO Concord. N.C. WSRC Durham, N.C. WING Dayton, Ohlo KPAM Portand, Oree
WLSH Lansford, Pa. KQV Pittsburgh, Pa. WPCC Clinton, S.C. WYMB Manning,
WCMT Martin. Jenn. KBUD Athens, Tex,
KBAN Bowle, Tex, KVLB Cleveland. Tex
KXIT Dalhart Tex KXIT Dathart, Tex.
KADO Marshall, Tex. KRIG Odessa. Tex. KNAL Victoria. Tox WRIS Roanoke, \(V\) a. WKBH LaCrosse. Wls. 1420-211.1
1000 d1000
250
1000
250
000d KSTN Stockton, Callf.1000 WLIS Old Saybrook. Conn,WDEF Delray Beach,WEBF Delray Beach, Fla,250
1000 d
1000
250

 250
250 \({ }^{20}\) \begin{tabular}{c}
2050 \\
\(\substack{2050 \\
250}\) \\
\hline 200
\end{tabular} WAVO Avondale Estates, Ga WRBL Columbus, Ga. WLET Toccoa, Ga. WINI Murphysboro, Ill. WOC Davenport, lowa WTCR Ashland, ISy. WHBN Harrodsburg, K
WVJS Owensboro. Ky. KPEL Lafayote, La. WOKW Brockton, Mass.
WBSM New Bedford, Mass WBEC Pittsfleld, Mass
WAMM Filint, Mileh. WKPR Kalamazao, Mich. KTOE Mankato, Mint. WSUH Oxford, Miss.
WQBC Vicksburg, MIs KBTN Neosho, Mo. K000 Dmaha, Nebr KSYX Santa Rosa, N. Mex, WALY Herkimer, N. Y. WLNA Peeksklil, N. WMYN Mayodan, N.C.
WGAS S, Gastonia, N.C. WVOT Wilson, N.C. WHK Cleveland, Onlo KTJS Hobart, Okla KYNG Coos Bay, Oreg. WCOJ Coatesville, Pa. WCED DuBols. Pa WCRE Cheraw, S. KABR Aberdeen. S.D WEM8 Erwin, Tenn. WKSR PulaskI, Tonn
KFYN Bonham, Tex. KTRE Lufkin. Tex. KGNB New Braunfels, Tex KPEP San Angelo. Tex. WWSR St. Albans, Vt. WDDY Gloucester, va. WKCW Warrenton, Va. KU」 Walla Walla. Wash. WPLY Plymouth. Wis.

\section*{1430-209.7}

CKFH Toronto, Ont. WFHK Pall City, Ala, KHBM Monticello, Ark,
KAMP El Centro. Calif. KARM Fresno, Calli. KARM Fresno, Callf.
W.P. Ke. Wave Length lo00d KJAY Saeramento, Callf. 1000d KOSI Aurora, Colo. 1000 WLAK Lakeland, Fla. 1000 d WPCF Panama Clty. Fla. WGFS Covington, Ga. WRCD Dalton, Ga. WWGS Tifton, Ga.
WNSH Highland WCMY Ottawa, III. WIRE Indianapolls, In KASI Ames, Iowa Ind. KMRC Morgan City. WNAV Annapolis, Md, WION Ionla, Mitch. WBRB Mt. Ciemens, Mich. WLAU Laurel, Miss. WAOL Carrolliton. Mo WIL St. Louls, Mo
KRGI Grand Island WNJR Nowark, N. WENE Endicott. N. Y WMNC Morganton, N.C. WDJS Mt. Olive, N.C. WFOB Fostorla. Ohlo WCLT Newark, Ohio KALV Alva, Okla. KELI Tulsa, Okla. KGAY Salem, Oreg WVAM Altoona, Pa. WFREL Crankiln, Pa,
Waguas, P.R. WBLR Batesburg, S.C KBRK Marion, S,C. WFCT Fountain City, Tenn. WENO Madison, Tenn. KSTB Breckenridge, Tex. KEES Gladewater Tex. KCOH Houston. Tex. KLO Ogden, Utah
5000 WIVE Ashland. Va.
1000 KBRC MIt. Vornon, wash. WEIR Welrton, W. Va.
WBEV Beaver Oam, Wis.
1000
5000 d
1000 d
5000
500 d
500 d
1000
1000
\(5000 d\)
\(1000 d\)
5000 d
1000 d KCOY Santa Maria, Callf.
5000 WBIS Bristol, Conn.
1000d WWBA Winter Park, Fia.
5000 W WGIG Brunswick. Ga
500 d
5000 d
5000 d
5000

\section*{w} WRA Anna, IIt.
WIOK Normal, III.
WPRS Parls, WPRS Paris, fIII. WGEM Quincy, Ill,
WROK Rockford, IIt WPGW Portland, Ind, KCHE Cherokee, lowa 1000
1000 d
5000
1000
\(1000 d\)
000d KMLB MOnroe,
5000 WAAB Wercester, Me.
10000 WBCM. Bay City, Mich.
1000 WDOW Dowaglac Mits.
500 d
1000d KEVE Golden Valley, MInn.
1000 d
1000 d
500
1000 d
50
1000
50

\section*{1440-208.2}

FCP Courtenay, B,C,
WHHY Alontgomery, Ala KHOG Fayettevilis, Ark. KOルY Little Rock, Ark. KVON Napa. Callf.
\begin{tabular}{|c|c|c|}
\hline W.P. & Ke. Wave Length & W.P. \\
\hline 500 & WYAM Bessemer. Ala. & 000 \\
\hline 5000 & WDIG Dothan. Al & 00 \\
\hline 500 d & WFIX Huntsville, Ala, & \\
\hline 10006 & K & 250 \\
\hline 1000 d & KAWT Douglas, Ari & 0 \\
\hline 5000 & KNOT Prescott, Ariz. & 250 \\
\hline 1000d & KOLD Tucson, Ariz. & 250 \\
\hline 500 d & KENA Mena, Ark. & 0 \\
\hline 5000 & kyor bly & 250 \\
\hline 1000 d & KOWN Escondido, & \\
\hline 500 d & KPAL Palm Sprin & \\
\hline 5000 & KTIP Porterville & 1000 \\
\hline 5000 d & KSAN San Francisco, & \\
\hline 5000 d & KVML Sonora, Calif. & 250 \\
\hline 500 d & KVEN Ventura. Calif & \\
\hline 5000 d & KAGR Yuba City, Callif. & 00 \\
\hline 500 d
5000 & KGIW Alamosa, Colo. KYOU Greeley, Colo. & 250
1000 \\
\hline 5000
5000 & KYOU Greeley, Colo. WNAB Bridgeport, Conn. & \[
\begin{array}{r}
1000 \\
250
\end{array}
\] \\
\hline \[
\begin{aligned}
& 5000 \\
& 5000
\end{aligned}
\] & \begin{tabular}{l}
WNAB Bridgeport, Conn. \\
WILM Wilmington, Del.
\end{tabular} & 250 \\
\hline 5000d & WOL Washington, D.C. & 25 \\
\hline & WWJB Brooksville, Fla. & 250 \\
\hline 5000 d & WM FJ Daytona Beach, Fla. & 000 \\
\hline 1000 d & WSKP Mlami, Fla, & 250
1000 \\
\hline \(1000 d\)
1000 & WBSR Ponsacola, Fia. WSPB Sarasota, Fla. & \[
\begin{aligned}
& 1000 \\
& 1000
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& 1000 \\
& 500 \mathrm{~d}
\end{aligned}
\] & WSPB Sarasota, fla. WSTU Stuart. Fla. & 150 \\
\hline 500 & WTNT Tallahasseo, Fla & 1000 \\
\hline 50 & WGPC Albany, Ga. & 250 \\
\hline 5000 d & WBHF Cartersville, Ga & \\
\hline 50 & WCON Cornelia, Ga. & 50 \\
\hline 500 d & WKEU Griffng, Ga, & 1000
1000 \\
\hline 1000 & WBYG Savannah & 1000 \\
\hline 5000 d & W VLo Valdosta, Ga & 1000 \\
\hline 1000 & KEOK Payetto, Ida & 5 \\
\hline 1000d & KEEP Twin Falls, Ida & \\
\hline 5000d & WHFC Cicero, III & 000 \\
\hline 1000 & WKEI Kowanee, \({ }^{\text {W }}\) & 100
1000 \\
\hline 1000 d & wCVS Springfield, ilf. WANE Ft. Wayne, Ind & 1000 \\
\hline 1000d 1000 d & WXVW Jeffersonvilio, Ind & \\
\hline 5000 & WASK Lafayette, Ind. & \\
\hline 1000 d & WAOV VIncennes. In & \\
\hline 1000 d & KLWN Cedar Rapids. Lowa & \\
\hline & WTCO Campbelisvi & 1000 \\
\hline 1000 & WWXL Manchester. & 1000 \\
\hline 1000d & WPAD Paducah, Ky & 1000 \\
\hline & kSIG Crowl & 00 \\
\hline & KNOC Natchitoches, La & \\
\hline 00 & WNPS New & 250 \\
\hline 5000 & WRKD Rockland, Maine & 250 \\
\hline & WKTQ South Paris, Ma & 250 \\
\hline 1000 d & WTBO Cumberland, Md. & 0 \\
\hline 5000 d
500 & WMAS Springfiold, Mass. & \\
\hline 500
1000 & WATZ Alpena Towns & \\
\hline 1000
1000 & & \\
\hline 500 d & WHTC Holland, Mich. & \\
\hline 5000 & WMIQ Iron Mtn.. Mich & 50 \\
\hline 1000 d & WIBmi Jackson, Mleh & \\
\hline 000d & WKLA Ludington, Mich & 50 \\
\hline 5000 & WHLS Port Huron, Mic & \\
\hline 1000 & KATE Albert Lea, Min & 50 \\
\hline 000d & KBUN Bemidji, Minn. & 00 \\
\hline 50 & KBMW Breckenride WELY Ely, Minn, & 250
1000 \\
\hline 5000 & KFAM St. Cloud, Minn. & 1000 \\
\hline 500 d & Wrox clarksdale. Mis & 50 \\
\hline 500 d & wCJU Columb & \\
\hline 5000 & WJXN Jackson, Ml & \\
\hline & WOKK Meridian, Mlss. & 0 \\
\hline 1000 d & WNAT Natchez, Mis & \\
\hline 10000 & WROB West Point, Mlss. & 250 \\
\hline 5000 & KFTW Fredericktown, Mo & \\
\hline 50000 & WMBH Joplin. Mo. & 100 \\
\hline 5000 & KIRX Kirksvilie. & 1000 \\
\hline 1000 & kOK0 Warronsburg, Mo & 50 \\
\hline 1000 d & KWPM West Plains, M & 1000 \\
\hline 1000d & KXXL Bozeman, Mont. & 0 \\
\hline 5000 & KUDI Great Falls, mon & 000 \\
\hline 1000 d & KXLL Mlssoula, mant. & 250 \\
\hline 1000d & KRBN Red Lodoe. Mon & 1000 \\
\hline 1000d & KVCK Wolf Point, Mont. & 1000 \\
\hline 1000d & K WBE Beatrice, Nebr. & \\
\hline 1000d & KCSR Chadron, Nobr & 50 \\
\hline 1000d & KONE Reno, Nev. & 50 \\
\hline 1000d & WKXL Concord. N.H. & 000 \\
\hline 5000 d & WEMJ Laconia, N.H. & 250 \\
\hline 1000 & WFPG Atlantic City, N.J. & 1000 \\
\hline 5000 & WCTC New Brunswick, N. & \\
\hline 5000 & KLOS Albuquerque. N.M & 250 \\
\hline 1000 & KLmX Clayton. N.Mex. & \\
\hline 5000 d & KOBE Las Cruces. N.Mox. & 250 \\
\hline 500d & KENM Portales. N. & 1000 \\
\hline 1000 d & WCLI Corning, N.Y & 1000 \\
\hline 5000 & WWSC Glen Falis, N.Y. & 10000 \\
\hline 1 kwd & WHDL Olean, N.Y. & 1000 \\
\hline 1000 d & WKIP Poughkeepsie, N.Y. & \\
\hline 500 d & WKAL Rome. N.Y. & \\
\hline 5000
1000 & WATA Boone. N.C & 250 \\
\hline 1000 & WGNC Gastonia. N.C. & 1000 \\
\hline 5000 & WI2S Henderson. N.C. & 1000 \\
\hline 5000 d & WHKP Hendersonville, N.C. & 1000 \\
\hline 5000 d & WHIT New Bern. N.C. & \\
\hline 5000
5000 & kGCA Rugby, N. Dak. & 250 \\
\hline 5000 & WJER Dover Ohio & 250 \\
\hline 5000 & WMOH Hamilton. Ohio & 1000d \\
\hline & WLEC Sandusky, Ohio & 1000 \\
\hline & KWHW Altus. Okla. & \\
\hline 100 & KGFF Shawnee, Okla. & 1000 \\
\hline 250 & KSIW Woodward, Okla. & 000 \\
\hline 250 & KORE Eugene, Oras. & \\
\hline 1000 & KFLW Klamath Falls. Ores & \\
\hline & KLBM La Grande. Oreg. & \\
\hline
\end{tabular}

Ke, Wave Length W.P. Kc. Wave Length W.P.|Kc. Wave Length W.P. Ke. Wave Length WPEG Winston.Sal WDLR Delaware, ohio KREK Madill, Okla. WREK Sapulpa, Okla, WLOA Braddock, Pa. WTTC Towanda, Pa. WBSC Bennatsvilifo. s.C. WTHB N. Augusta, S.C KWBC Navasota. Tex. WWBC Navasota. Tox WYRL Bristol. Tenn. WYRL Bristol. Tenn. WTPI Cookville, Tenn. WKPT Kingsport. T
WKBA VInton. Va. WKBA Vinton. Va. 10000 d WBOF Virgina Beach. Va. 5000 d wXVA Charlestown, W.Va.

\section*{\(1560-192.3\)}

CFRS SImcoe. Ont.
KPMC Bakersfield. Cailo. WBYS Canton. III.

WJKR Muskegon Hts., Mich. 250d KSWI Councll Blufts, lowa l000d WKBW Buffalo, N.Y. \(\quad 50000\) \(\begin{array}{ll}\text { WFYI Mineola, N.Y. } & 50000 \mathrm{~d} \\ \text { KOMA OKla. City, Okla. } \\ 50000\end{array}\) KGON Oregon City, Orea, 10000 1530-196.1
KFBK Sacramento. Callf. KWLA Many, La. Miss WTHM Lapeer. Mich.
WENG Englowood, Fla WCKY Cincinnati, ohio KGBT Harlingen, Tox. KGBT Harlingen,

\section*{1540-195.0}

\section*{2 NS Nassau, B.W.I.} KHFL Toronto, Ont, WSMI Litchfield, III, W BNL Boonville, Ind KXEL Waterloo, lowa KNEX McPherson, Kan
KLKC Parsons, Kans. KLKC Parsons, Kans.
WDON Wheaton, Md. WPTR Albany, N.Y. WIFM EIkin, N.C. WABQ Cloveland, Ohlo WJMJ Philadel phia,
WPTS Pittston, Pa. WPTS Pittston, Pa. WADK New port. R.I. KCUL Ft. Worth, Tex. KGBC
KBVIVeston.
KBUX
Bellevue, Wash. WTIKM Hartford, WIs.

\section*{1550-193.5}

CBE Windsor, Ont.
WBHM Birmingham,
Wh WBHM Birmingham, Ala WMOE MOblle, Ala. KFIF Tueson, Ariz.
KXEX Fresno
Calif. KKHI San Fran. Calif. KDAB Arvada, Colo. WRIZ Coral Gables, FIa WORT New Smyrna B
WYOU Tampa. Fla. WSMA Smyrna, Ga. WJIL Jacksonville. ill. WCTW New Castio, Ind. KEDD Dodge City, Kans. WIRY Irvine, Ky. W MSK Morganfeld, Ky. WYNE Baton Rouge, La.
KOKA Shreveport, La.
WSER EIkton. MId. WSHN Fremont, Milch. WSAO Sanitobia. Mis KBLR Bolivar, Mo. KGMD Cape Girard \(\quad 250\) KKJO St. Joseph, Mo. WCGR Canadaiqua, N. wbym Utica. N.Y. WHTB Greenville. N.C. WNOH Ralalgh, N.C.

SWI Councll Bluffs,
OXR Paaducah. Ky.
QYX Joplin. Mo.

50000
1000 d
1000 d
1000 d
5000 d
250
1000
50000
50000
1000 d
50000
1000 d
250

10000 50 kwd

1000 d
250 d
250 d

\section*{5250 d}

5000
250
250
250 d
250 d
1000
50000
250 d
1000 d 1000 d
5000 d 1000 d
1000 d
1000 d
50000 d 1000 d
50000 d

0000
1000
500 d 10000
50000 d 50

\(\qquad\) 10000 d
10000 d
F1a. 250 100
100
10
 h. Florlda
doe,
Fla.
Fla. 1000
250

\section*{d \\ \section*{d}} \begin{tabular}{l}
1000 d KUXL Golden Valley, Minn. 500 d \\
1000 d \\
K \\
\hline 1000 d
\end{tabular} \(\begin{array}{lll}250 \mathrm{~d} & \text { WDNA Winona, Miss. } & 1000 \mathrm{~d} \\ 5000 \mathrm{~d} & \\ \text { KLEX Lexington. Mo. } & 250 \mathrm{~d}\end{array}\) \(\begin{array}{clr}5000 \mathrm{~d} & \text { KLEX Lexinoton. Mo. } & 250 \mathrm{~d} \\ 10000 & \text { WAFS Amsterdam, N.Y. } & 1000 \\ 250 \mathrm{~d} & \text { WFLR Dundee, N.Y. } & 1000 \mathrm{~d}\end{array}\) \(\begin{array}{lll}250 \mathrm{~d} & \text { WFLR Dundee, N.Y.Y. } & 1000 \mathrm{~d} \\ 1000 \mathrm{~d} & \text { WBUZ Fredonia. N.Y. } & \\ \text { Whod }\end{array}\)

\section*{0} \(k\)
\(\mathbf{W}\)
\(w\)
\(w\)
\(w\) WWIL Colorado Spros., Colo. 5000d WVGT Mount Dora, Fla. 1000 d
WCLS Columbus, Ga. d \\ \section*{ \\ \section*{ \\ d \\ 00}

\section*{00 \\ \\ \section*{00d \\ \\ \section*{00d \\ \\ 0d} \\ \\ 0d}

KW
KW
KD
WA
WA

\section*{d}

\section*{d}

\section*{\begin{tabular}{ll}
d & K \\
d \\
d \\
d \\
w \\
& \\
\hline
\end{tabular}} WOW Bradbury Hots., Mid. WDO St. Johns, Mich.

10000

\section*{}

\section*{w}

\section*{K}

\section*{w}

\section*{K}

WPAC Albuquerque. N. Mex. 1000 d
WZKY Albemarle, N.C. \(\quad 250 \mathrm{~d}\)
WPYB Benson, N.C. \(\quad 500 \mathrm{~d}\)
WVKO Columbus, Ohlo 1000 d

\section*{KLTR Blackwell, Okla.
wCor Columbia, Pa}

WCOY Columbla, Pa.
WEND Ebonsburg, WEND Ebensburg, Pa. 1000 d WORG Orangeburg, s.c. 1000 d WYCL York. S.C.
WSKT
Colonial Village, Tenn. 250 d WSKI Solonial Silage, Tenn. 250 d
wille, Tenn, 1000 d WSKT South Knoxvlile, Tonn. 250 \(\begin{array}{ll}\text { KKAL Denver Clty, Tex, } & 250 \mathrm{~d} \\ \text { KGAF Gainesville, Tex. } & 250 \mathrm{~d}\end{array}\)
 KTLU Rusk. Tex.
KWED Seguln KWED Seguln, Tex.
KBYP Shamrock, Tex KBGO Waco Tex. WILA Danville, Va.
WPUV Pulaski, Va.

\section*{w}

\section*{\(1590-188.7\)}

WATM Atmore, Ala. WVNA Tuscumbia. Ala.
KPBA Pine Bluft Ark.

5000 d KPBA Pine Bluff. Ark.
KLIV San Jose, Calif. KUDU Ventura, Calif. KCIN Victorvilio, Calif. WBRY Waterbury, Conn.
WOWY Clewiston, Fla.
WILZ St. Peteraburg Beach. WILZ St. Peteraburg Beach.
WELE S. Daytona Beh.,
\(\qquad\)
WALG Albany. Ga. WLFA Lafayette. GA. WTGA Thomaston, Ga,
WNMP Evanston, III. Fia. 1000d WNMP Evanston, 111.
WAIK Galesbur, WAlK Galesburg, III.
WGEE Indlanapolls, Ind. WPCO Mt. Vernon. Ind. KWBG Boone, lowa KVGB Great Bend. Kans.
WLBN Lebanon. WLBN Lebanon. Ky. WETT Ocean City, MId. WTVB Coldwater. Mich.
WDOG Marine City. Mich. WMIC St. Helen. Mitch.
KRAD E. Grand Forks. Minn
WOKJ Jackson. Miss. \(\qquad\) KDEX Dexter. Mo.
KPRS Kansas City, mo
90. 1000 d
5000
1000
KPRS Kansas City,
Od
KCLU Rolla, Mo.
WSMN Nashua. N.

\section*{WAUB Auburn. N. .Y. WAUB AU
WEHH EI}

1000 KWIP Merced. Callif. 500 d
\(\begin{array}{lll}250 d & \text { KDAY Santa Monlea. Cal. } & 50000 \mathrm{~d} \\ 250 d & \text { KHUM Santa Rosa, Callf, } & 500 \mathrm{~d}\end{array}\)
U. S. and Canadian AM Stations by Location

Abbreviations: C.L., call letters; Ke., frequency in kilocycles; N. A., network affiliation-A: American Broadcasting Co.; C: Columbia Broadcasting System, Inc.; M: Mutual Broadcasting System; N: National Broadeasting Co., Inc.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Location & C.L. Ke. N.A. & Location & C.L. Ke. N.A. & Location & C.L. Ke. N.A & Location & C.L. Ke. N.A. \\
\hline Abbevilite. Ala, & WARI 1480 & Aberdeen. Md. & WAAID 970 & Abllene, Tex. & KRBC 1470 A & Adel. Ga, & WAAG 1470 \\
\hline Abbeville. La. & KROF 960 & Aberdean, Miss. & WMPA 1240 & & KCAD 1560 & Adrlan, Mith. & WABI 1490 \\
\hline Abbeville. S.C. & WABY 1590 & Aberdeen. S.Dak. & KABR 1420 & & KNIT 1280 & Aguadilla. P.R. & WABA 850 \\
\hline & & & SSON 930 A & & KWKC 1340 M & & WRES 970 \\
\hline 164 WHIT & RADIO LOG & & TEXRO 1320 & Ada, Okla. & KADA 1230 A & Alken, S.C. & WAKN 990 \\
\hline
\end{tabular}

Altkin，Minn． Ahron，Ohio

Alamogordo，N．M．
Alamosa．Colo
Albany，Ga．

Albany．Ky． Albany，Minn．

Albany，Oreg．

\section*{Albemarlo，N．C．}

C．L．Kc．N．A． KLKW 1330 D WAKR 1590 WADC 1350 WADC 1350 C WHLO 640 M KALG 1230 A KRAC 1270
KGIW 1450 WALG 1590 A WLYB 1250 WGPC 1450 WANZ 960 KASM 1150 WABY 1400 WOKO 1460 M \(\begin{array}{ll}\text { WPRR } 540 & \text { A } \\ \text { WROW } & \\ \text { W }\end{array}\) KWIL 790 M WABZ 1010 WZKY 1580 \(\begin{array}{ll}\text { Albert Lea．MInn．KATE } & 1450 \\ \text { Albertylle．Ala．WAVU } & 690\end{array}\) Albion，Mich． Albuquerque．

Alcoa，Tenn．
\[
\mathbf{A}
\] Alexander Clty，Ala．

\section*{Alexandrla，La．}

Alexandrla，Minn． Alexandria，\(V\) a．
Aloona，lowa Aloona，low
\[
1
\]
\[
A
\]
\[
580 \text { A }
\]
\[
\begin{aligned}
& \mathbf{A} \\
& \mathbf{N}
\end{aligned}
\]
\[
3>2
\]
\[
5>2
\]
\[
\begin{aligned}
& \text { A } \\
& \mathrm{A} \\
& \mathrm{~A} \\
& \mathrm{~A} \\
& \mathrm{~A}
\end{aligned}
\] Alice，Toz． Allegan，Mith． Allentown， Pa

\section*{Alliance．Nebr．} Allance．Ohl Alma，Ga． Ama，Mich．

Alpine，T\＆x． Altavista， Alton，III． Altona，Man．

Alturas，Callt． Altus，Okla． Amarillo，Tex． WR
\(K A\)
\(K K\)
\(K S\)
\(K\)
\(W\)
\(K L\)
\(K O\)
\(W 0\)
\(W H\)
\(W A\)
\(W K\)
\(W S\)
\(K C\)
\(W F\)
\(W\)
\(W F\)
\(M i c h\)
\(W\) Altoona，Pa．

LGA 1600
\(\qquad\) WHOL 580 AEB 790 \begin{tabular}{lll}
SAP & 1320 \\
& \\
\hline
\end{tabular} N
\(N\)
A
Ambridge，Pa．
Americus，Ga．
Ames，lowa
Amherst．N．S．
Amherst，N．Y．
Amite，La．
Amory．Miss．
Amos，Que．
Amsterdam，N．Y．
Anaconda．Mont．
Anacortes．Wash．
Anahcim，Calif．
Anchorage．Allaska

KFQD 730 C．A
KEN1 550 A．M．N
Anderson，Callf．KPOA 920
Anderson，Ind．
Anderson．S．C．
Andrews，Tex．
Annapolif，Mid．

Ann Arbor，Mleh．
Anna．JII．
WANA 1490
WDNG 1450 A
Anoka，Minn．KAMA 1390
nsonia Conn．WADS 690 M Antloo，Wls． Antigonish．N．S．CJFX 900 pollo，Pa． Appleton．Wis Cal．
```

Arab，Ala．
Areadia，Fla Arcata Calli． Ardmore，Dkla，

``` Areclbo，P．R．
2
M

C．L．Kc．N．A

Ar
Ar
Ar

WNIK 1230 Arkad．City，Kans．KSOK 1280
Arking Arilington，Fla．WQTY 1220 Arlington，Va．WAVA 780 Artesia，N．M WEAM 1390 Arroye Grande，Calif．

\section*{Ashburn，Ga．WMES 1570} Asbury Park，N．J．WJLK 1310 \(\begin{array}{ll}\text { Asheboro．N．C．WGWR } & 1260 \\ \text { Asheville，N．C．WISE } 1310\end{array}\)

\section*{Ashland，Ky．}
\(\begin{array}{lrr}\text { WCMI } & 1370 \\ \text { WTCR } & 1420\end{array}\)

Ashland，Va．
Ashland，Wis． Ashtabula，Onio Atiantic Beach，Fla．WKAN 1220 Atlantic City，N．J．WFPG 1450 c

\begin{tabular}{l|l}
FAH & 1310 \\
CQS & 1400 \\
\hline
\end{tabular}

\section*{Atmore，Ala．} Attleboro．Mass．WATM 1590 Auburn，Ala．WAUA 1320 Auburn，Calli．KAHI 950
Auburn，N．Y．WMB Auburn，N．Y．WMBO 1340 M
Auburn，Wash．
つロ
HKVLF 1240 MWKDE 1280WOKZ 1570CFAM 1290WRTA 1240
\(\begin{array}{cc}\text { WVAM } & 1430 \\ \text { KCNO } & 570 \\ \text { KWHW }\end{array}\)KWHW 1450KALV 1430\(\begin{array}{lll}\text { KFDA } & 1440 \text { A } \\ \text { KGNC }\end{array}\)KGNC 710 NK1XZ 940 CKRAY 1360KZIP 1310\begin{tabular}{c|c}
KZIP & 1310 \\
WMBA & 1460
\end{tabular}\begin{tabular}{l|l}
KMBA & 1460 \\
WDEC & 1290
\end{tabular}KSEC 1290
WOI 640
\(\begin{array}{lll} & \text { WKK } \\ \text { Aurora. Mo. } & \text { KSWM } & 980 \\ \text { Austin, Minn. } & \text { KAUS } & \mathbf{4 8 0} \mathrm{m}\end{array}\)
\(\begin{array}{ll} & \text { KValon. Callf. KET } 1300 \mathrm{M} \\ \text { AviG } 740\end{array}\)
Avon Park, Fla. WAVP 1390
Avondale Estates, Ga. WAVO 1420
Aztec. N. Mlex. KNDE 1340
Babylon, N. Y. WBAB
WBAB 1440 M
WGLI 1290
Auburn, Wash. WAUB 1590
Auburndalo. Fla. WASY 1220

Location

\section*{Barris．Ont．}

Location Battle Creek，MIch．WBCK 930 Bay Clty．Tex．
Bay Minette．Ala． Bayamon，P．R． Baytown，Tex． Beacon．N．Y．
Beardstown．ill．
Beatrics，Nebr． Beatries，Nebr．
Beaufort，N．C．
Beaufort，S．C．

M
Beaumont．Tox，
\begin{tabular}{l}
Blytheville. Ark. KLCN 9450 \\
BRS 910 \\
\hline
\end{tabular}
Boaz, Ala. WBSA 1300
Boca Raton, Fla, WFSG 730
Bogalusa, La. WIKC 1490 N
\(\begin{array}{cc}\text { Boise, Idaho } & \text { KATN } 1010 \\ & \text { KBOI } 950 \text { C }\end{array}\)
 \(\begin{array}{ll}\text { KBOI } 950 \\ \text { KEST } & 790\end{array}\)
 \(\begin{array}{ccc}\text { KGEM } & 1140 & \mathrm{M} \\ \text { KIDO } & 630 & \mathrm{~N}\end{array}\)
\begin{tabular}{lll}
& Kollvar, Mo. & KYE 740 \\
KBLR & \\
\hline
\end{tabular}
\(\quad\)
C
M
A
Bellefontalne, Ohlo WOHP 1390
Bellefonte. Pa.
\(\begin{aligned} & \text { Well Fourche. }\end{aligned}\)
WBLF 1330
\begin{tabular}{c}
Bell Fourthe. S, Dak. KBLF K 1330 \\
\hline 1450
\end{tabular}
Belle Glade, Fla. WSWN 900
Belleville, Ont.
Belleville, Ont. CJBQ 800
Belleville, HII. WIBV 1260
\(\begin{array}{lll}\text { Beliovue. Wash. } & \text { KFKF } & 1330 \\ & \text { KBVU } & 1540\end{array}\)
Bellingham, wash. KBVU 1540 M
KOQT 1550
Bellingham. Ferndale. Wash.
Belmont. N.C. WENY 930
Belolt, Wis. WGGC 1270 M-A
WGEZ 1490 M
Belit, Wis. WGEZ 1490
Belion. S.C. WHPB 1390
Belton, Tox. WHPB 1390
Belzoni, Miss. WELZ 1460
\(\begin{array}{ll}\text { Bemidj, Minn. } & \text { KBUN 1450 M } \\ \text { Bend, Ores. } & \text { KBND |l10 A }\end{array}\)
Bennetsville, S.C. WGRL 940 M

Benson, Mlnn.
Benson.
Benson, MInn.
Benson. N.C.
Benson, N.C.
Benton, Ark.
Benton, Ark.
Benton. Ky.
Benton. Ark.
Benton. Ky.
Benton Harbor, Mlo
Berkeley, Calli.
Beaver Dam, Wls.
Beaver Falls. Pa.
Beckley, W.Va.
\begin{tabular}{l}
Berk \\
Berl \\
\hline
\end{tabular}

\section*{Ber}
Berry Hill，Tenn．
Big Spro．．Tex．
Boulder，Colo．
Bowle，Tox．
Bowling Green，Ky．
 WHDH 850
 WMEX 1510
 WORL 950 M
 KBOL 1490
 KBAN 1410
 Bradenton, Fla. WMHI 1370
 Bradford. Pa. WBRD 1420
 Bradford. Pa. WESB 1490
Brady, Tex
 Brainerd. Minn. KLIZ 1380
 \(\begin{array}{ll}\text { Brainerd, Minn. } & \text { KLIZ } 1380 \\ \text { Brampton, Ont. } & \text { CHIC } 1090 \\ \text { Brandon, Man } & \text { CKX } 1150\end{array}\)
 Brandon, Man. CKX 1150
 \(\begin{array}{ll}\text { Branson. Mo. MBM } & \text { KBHM } 1220 \\ \text { Brantford, Ont. } & \text { CKPC } 1380\end{array}\)
 \(\begin{array}{ll}\text { Brantiord, Ont. } & \text { CKPC } 1320 \\ \text { Brattieboro, Vt. } & \text { WTSA } 1450\end{array}\)
 \(\begin{array}{ll} & \text { WTSA } 1450 \\ \text { Brawiey, Callf. } & \text { WKVT } 1490 \\ & \text { KROP } 1300\end{array}\)
 \(\begin{array}{ll}\text { Brawiey, Callf. } & \text { KROP } 1300 \\ \text { Brazil. Ind. } & \text { WBZI } 1380\end{array}\)
 Brazif. Ind. WBZI 1380
Breckenridge. MInn. KBMW 1450
 Breckenridge. minn. KBMW 1450
 Breckenrldoe, Tex. KSTB 1430
 Bremen, Ga: WWCC 1440
 Bremen, Ga, WWCC 1440
Bremerton. Wash. KBRO 1490
 Brenham. Tox. KWHI 1280
Brevard, N.C. WPNF 1240 M.N
 Brevard, N.C. WPNF \(1240 \mathrm{M} \cdot \mathrm{N}\)
Brewster, N.Y. WBRW 1510
 Brawter, N.Y. WBRW 1510
 \(\begin{array}{ll}\text { Brawton. Ala. } & \text { WEBJ } 1240 \mathrm{M} \\ \text { Bridgeport, Ala, } & \text { WBTS } 1480\end{array}\)
 Bridgeport, Ala, WBTS 1480
Bridoeport, Conn. WICC 600
 A Bridgeport. Conn. WICC 600 A
 Bridgeton. N.J.WNAB 1450 A. A1
 Bridgewater, N.S. CKBW 1000
 Bridgewater, N.S. CKBW 1000
Brigham City. Utah KBUH 800
 \begin{tabular}{ll}
Brighton. Colo, KBRN \\
Bin \\
800 \\
\hline
\end{tabular}
 \begin{tabular}{ll}
Brinkley, Ark, KBRN 800 \\
KBRI 1570 \\
\hline
\end{tabular}
 \(\begin{array}{ll}\text { Bristo1, Conn. } & \text { WBIS } 1440 \\ \text { Bristol, Tenn. } & \text { WOPI } 1490\end{array}\)
 Bristol, Va
Brockton, Mass. WFHG 980
 90 N
 WYKE 1550
 WCYB 690
 A
Brockulle. Ont. WOKW 1410
CFJR 1450
Brockvilio, Ont, CFJR 1450
Broken Bow, Nebr. KCNI 1280
Brookfleld, Mo. KGHMI 4770
Brookfleld, Mo. KGHM 1470
Brookhaven, Mliss. WCH
Brookhaven, Miss. WCHJ 1470 W
Brookings, Orog, KURY 910
Brookings. S. Dak. KBRK 1430
Brookline, Mass. WBOS 1600
\(\begin{array}{ll} & \text { WYDE } 850 \\ \text { Blsbee, Arlz. WVOK } 690 \\ & \text { KSUN } 1230\end{array}\)
M
C.L. Kc. N.A.
Ast
\[
\begin{array}{ll}
\text { WREO } 970 \\
\text { KSNO } 5000
\end{array}
\]

Blshon Cailf C．L．Kc．N．A．
\begin{tabular}{l}
Bishop．Cailf．KIBS 1230 \\
Bishovilie．S．C．WAGGS 1380 \\
\hline
\end{tabular} Bismarck．N．Dak．KFYR 350 N
Bismarch．Mandan，N．Dak．
Black Mountain，N．C KBOM 1270 N．C． WBMT 1350 Black River Falls．WI WFGW
WIS． KBLI 690 WBSG 1390 Blackstone．Va，WKLV 1440 Blackwoll，Okla，KLTR I 580
Blaine，Wash Blakely，Ga．WEBK 1260
Blanding，Utah KUTA 790 Bilind River，Ont．CJNR 730 Bloomington，III．WJBC 1230 A
Bloomington，Ind．WTTS 1370 A

\(\square\)

A
\begin{tabular}{lll}
Blountstown, Fla. WHLM & 550 \\
\hline 1370
\end{tabular}
Bluefleld. W.Va. WHIS 1440 N
\(\begin{array}{ll}\text { Bluefleld, W,Va. } & \text { WHIS } 1440 \mathrm{~N} \\ \text { Blythe, Callf. } & \text { KYOR } 1240 \mathrm{M} \\ \text { BYO } 1450 \mathrm{~A}\end{array}\)

CKBB 950 K K1OT 1310

Bismarck－Mandan，N．Dak
 \(\begin{array}{ll}\text { WTTS } & 1370 \\ \text { WCNR } & 930 \\ \text { WHCM } & 550\end{array}\)
WAR 1460
Black River Falls.N
\[
\begin{aligned}
& \text { KAST } 1370 \text { N } \\
& \text { KIAL } 1230
\end{aligned}
\]
Atchison, Kans.
Baxley．Ga．
Bay City．Mich．
Bay Clty．Tex．
Bay Minette．Ala．
Bayamon，P．R．
Baytown．Tex．
Beacon．N．Y．
Beardstown．Ill．
Beatrics，Nebr．
Beafort，N．C．
Beaufort，S．C．
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Locetion & C.L. Ke, N,A. & Losation C.L. Ke. N. & Lecafion & C.L. Ke. N. & Locafion & L. Ke. N \\
\hline Brownfeld, Tex. Brownavill Tor & KTFY 1800 & \begin{tabular}{l}
Center, Tox. \\
KDET 930
\end{tabular} & & \[
\text { WPDX } 750
\] & Coquilla, Dren. & \[
\text { KWRD } 680
\] \\
\hline Brewnsyille, Tex. Brewnweod, Tex. & \[
\begin{array}{c|c}
\text { KBOR } 1600 \\
\text { KBWO } 1880 \\
\text { K }
\end{array}
\] & Conterville. Iowa, KCOG 1400
Contervilio, Tonn, WHLP 1570 & Clarksdale, M liss. & \[
\begin{aligned}
& \text { WROX } 1450 \text { M } \\
& \text { WKDL } 1800
\end{aligned}
\] & Coral Gables, Fla. & \[
\begin{aligned}
& \text { WRIZ } 1550 \\
& \text { WYCG } 1070
\end{aligned}
\] \\
\hline & AN 1240 A & Contervillo. Utah KEEC 1800 & Clarksville, Ark. & KLYR 136 & Corbin, Ky. & T 680 m \\
\hline Brunswlek, Ga. & \[
\begin{array}{ll}
16 \\
10 & 1490 \\
A
\end{array}
\] & Central City. KY. WNE8 1050 & Clarksville, tenn. & WJZM 1400 m WDXN 540 & & \[
501330
\] \\
\hline Brunswlek. Malne Bryan, Tex. & \[
\text { WCME } 900 \mathrm{~m}
\] & Centralle, III. WCNT 1210 Centralia \& Chehalis. & Clarkaville. Tex. Claxton, Ga. & \begin{tabular}{l}
KCAR 1350 \\
WCLA 1470
\end{tabular} & th, Mlss. & \[
\text { KLAM } 1450
\]
WCMA 12so \\
\hline & W0AW \({ }^{\text {a }}\) & carralla Chenalio & & WGHC 1570 & & WCON 1450 \\
\hline Buekhannon, W.Va. & WBUC 1460 & Centreville, Miss. WLBS 1580 & Cla & KXLW 1320 & C & Y 790 \\
\hline Buftilo. & WBEN 9800 C & Chad burn, N.C. WVOE 1590 & & & & \\
\hline & WY8L 1400 WEBR 970 & & Clayton. N. Mex. & \[
\text { KLMX } 1450
\] & Corning, A & KCCB 1260 \\
\hline & WGG 550 & Chamberbiors. Pa. WCHA 800 & Clearwater, Fla. & \[
\begin{aligned}
& \text { WCPA } 900 \\
& \text { WTAN } 340
\end{aligned}
\] & & \[
\begin{aligned}
& \text { WCBA } 1350 \\
& \text { WCLI } 1450
\end{aligned}
\] \\
\hline & WKBW 1520 N & Champaion. III. WOWS 1400 C & & WAZE 860 & Cornwall, Ont, & SS 1220 \\
\hline & WWOL 1120 A & Chanute Ksms. KCRB \({ }^{\text {Coma }}\) & Cleb & KCLE 1120 & & 10 \\
\hline Buford. & WDMF 1460 & Chardon, Onio WGC. WCD 1580 & Cleveland, Ga & WRWH 1850 & & \\
\hline Burbank, Call & KBLA 1490 & Charlerol. Pa. WESA 940 & Cleveland, Miss. & WCLD 1490 & & KCTA 1030 \\
\hline Burley, Idaho K & KBAR 1230 A.M & Charles city lowe KCHA 1580 & , & K 141 & & 30 \\
\hline Burlington, lowa & KBUR 1490 A & Charleston, III. WEIC 1270 & Cloveland, Ohlo & & & 1440 \\
\hline Burlinaton, N.C. & WBBE 920 m & Charleston, Mo. KCHR 1850 & & 1260 m & & \\
\hline Burlinjton, Vt. & CAX 620 N & \[
\mathbf{C}
\] & & ERE 1300 & & \\
\hline & WDOT 1400 & & & & Corry, & WOTR 1370 \\
\hline & JOY 1230 & & & WABQ 1540 & Corsicana, Tow & \\
\hline Burnett. Tex. & KT8L 1340 & Charleston W. We WCMA \({ }^{1250}\) N & & WBAC 1340 M & Cortaz, & VFC 740 \\
\hline Burns, & KRNS 1220 & Charleston, W.Va. WCAW 680 & Cleveland. Tenn. & WBAC 1340 m & & WKRT 920 \\
\hline Butlor. & WPRN 1220 & 580 & & WCLE & Corvallis, Oreif. & KOAC 550 \\
\hline Butler, Mo. & KMAM 1530 & WTGR 1490 A & & KVLB 1410 & & KFLY 1240 \\
\hline Butlar, Pa. & WBUT 1050 & & & WJMO 1490 A & & KLOO 1350 \\
\hline & W18R 680 & WTIP 1240 m WXVA 1550 & & WOWY 1590 & & WTNS 1580 \\
\hline Butte, Mant. & KBOW 1490 C & Charlotte, Mleh. WCER 1390 & \begin{tabular}{l}
Cliften, Ariz. \\
clifton Ferge.
\end{tabular} & & Cottafe Grove, Oro. & \[
\begin{aligned}
& \text { KNND } 1400 \\
& \text { KYRD }
\end{aligned}
\] \\
\hline & KOPR 550 M & Charlotte, Mleh. WCER 1390
Charlotte. N.C. WBT 1100 c & \[
\underset{\mathrm{Cli}}{\mathrm{Cli}}
\] & WCFV & Cottonwood, Ariz. & KVRD 1240 \\
\hline Cabano. & CJAF 1340 & 610 m & ciinton. III. & WHOW 1520 & Couderspe & WFRM 600 \\
\hline Cadiliat, Mieh. & WATT 1240 m & WGIV 1600 & clinton, lo & KCLN 1380 & une & \\
\hline 1gues, P.R. & WNEL 1430 & \[
10
\] & & KROS 1340 m & & KFNF 920 \\
\hline Calro. Ga, & WGRA 790 & & \[
\begin{aligned}
& \mathbf{C l} \\
& \mathbf{C l}
\end{aligned}
\] & & & \\
\hline & WKRO 1490 & 80 & C1 & KWOE 1320 & covinion, Ga & GFS 1430 \\
\hline Calais. & WQOY 1230 N & & Cl & WPCC 1410 & Covington, La & WARB 730 \\
\hline Cald & KCID 1490 & WSTA 1340 & Clinton & WYSH 1380 & Covington & WKBL 1250 \\
\hline & KBGN 910 & WBNB 1000 & cloque & WKLK 1230 & Covingto & WKEY 1340 \\
\hline Calera, Ala & \[
\text { WBYE } 1370
\] & WCHV 1260 A & Clovis. & KCLV 1240 & Cowan, & WZYX 1440 \\
\hline Caloxieo, Calli & \[
\text { KICO } 1490 \text { A }
\] & 10 & & KICA 980 & & KRAI 550 \\
\hline Calgary, Alta. & CFAC & INA 1400 m & & KCHV 970 & & \\
\hline & CBX 1010 & I.CFCY 630 & Coali & KВMX 1470 & & KCAR 1380 \\
\hline & CFCN 1060 & Chase City, Va. WMEK 980 & Cosatasvilio. Pa. & WCOS 1420 & & KPLY 1240 \\
\hline & CKXL 1140 & Chatham. Ont. CFCO 8300 & Cocoa, & W & 保 & KPOD 1310 \\
\hline Calho & & MOC 1450 M & & & Craston. & KS1B 1520 \\
\hline Cambrides, Md. & WCEM 1240 & APO 1150 A.m & Cogoa Beseh. Fla. & WRKT 1300 & Crastulaw, Fla. & 1010 \\
\hline Cambridge, Mass. & AO 740 A & WD & & K0DI & & WJSB 1050 \\
\hline Cambridge, Ohio & WILE 1270 & WDOD 1310 C & Coeur d'Alene, Ida. & KVNI 124 & Cr & wsvs 800 \\
\hline Camden, Artion & KAMD 910 & & Coffeyville. Ka & KGGF 690 A & Cr & KIVY 1290 \\
\hline Camden. N.J. & WCAM 1310 & Chaboyean Mlen. WNOO 1260 & & KXXX \({ }^{700}\) & & KRDX 1280 \\
\hline Camden, 8. C. & & Chaboydan, mleh. WCBY 1240
Chaoktowasa, N.Y. WNIA 1230 & Cal & WTVB 1590 & Crosset & KAGH 800 \\
\hline Camdon, Tonm. & WFWL 1220 & Chahalls, Wesh. WITI 1420 & Col & KSLA 1000 & Crossy & \\
\hline Camero & KMIL 1330 & Chelan, Wash. KOZI 1220 & Colloge Park. Ga. & WEAD 1570 & Cuero. & 80 \\
\hline Camille & WCLB 1220 & Cheraw. S.C. WCRE 1420 & Colonial Hoiuhts. & Weab 350 & Cullman. Al & 8 \\
\hline Campbell. Ohle & WHOT 1330 & Charokes, towe KCHE 1440 & & VA 1290 & & \\
\hline Campbellsville, KY. & WTCO 1450 & Chester. III. K8GM 980 & Colonial & ma. & & \\
\hline Campbeilion. N.B. & CKNB 950 & Chester, Pa. WEEZ 1590 & & WSKT 1580 & Cumberland. & CFPM 1280 \\
\hline Camrose, Alta. & FCW & WVCH 740 & Colorado City, Tex. & KYMC 1320 & Cumberiand, Md. & wCUM 1230 \\
\hline Canandalgua, N.Y. & WCGR 1550 & Chaster, 8.C. WGCD 1490 & Cols & KPIk 250 & & \\
\hline Cannon city. Colo. & . KRLN 1400 m & Choyonne. Wyo. KFBC 1240 A & & KPIK 1580 & Cummings. Ga. & SNE 1410 \\
\hline Canonsburs. Pa. & WARO 540 & KRAE 1880 & & KVOR 1300 C & Cushins. O & KUSH 1600 \\
\hline Canton. & WCHK 1290 & & & & Cuyahoga Fals, Oh & \% \\
\hline nton, miss. & WDOB 1370 & ieago. III. WAAF 950 & & & & \\
\hline Canton. N.C. & WWIT 970 & 20 & & WCJU 1450 m & Cypr & \\
\hline Canton, O & WCNS 900 m & & Columbia, Mo. & KFRU 1400 A & & \\
\hline & WHOF 1060 & & & 1580 & Dad & DVC 910 \\
\hline & WHBC 1480 A & & Co & WCOY 1580 & Dalhar & KXIT 1410 \\
\hline \begin{tabular}{l}
Canyon \\
Cape G
\end{tabular} & \begin{tabular}{l}
KVPH 1550 \\
. KFVS 960
\end{tabular} & WYNR 12400 & Colu & WCO8 1400 A & Dal & WAAK 960 \\
\hline & KGMO 1550 & WGN 720 M & & & Dallas & KROW \\
\hline Carbondala. ItI. & WCIL 1020 & WIND 560 & & WNOK 1230 m & Dalias. & KIXL 1040 \\
\hline Carbondale, Pa. Cariboll. Maine & WCDL \({ }^{1440}\) & \[
\begin{array}{r}
1180 \\
890
\end{array}
\] & Columbia. & C¢ \({ }_{\text {c }} 1280\) & & SKY 660 \\
\hline Carisio. Pa. & WHYL 960 & 670 N & Columbia & WKRM 1340 & & A 570 \\
\hline Carisbad. N. Mox. & KAVE 1240 C & 10 & Columbus, Ga. & WDAK 540 N & & WFAA 820 \\
\hline mel/ & KRML 1410 & WMPP 1470 & & \[
\begin{aligned}
& 1420 \mathrm{c} \\
& 1270 \mathrm{~m}
\end{aligned}
\] & & KBOX 1480 \\
\hline & WROY 1480 & WCGD 1600 & & WCLS 1580 & The Dalles, Ores & KAR \\
\hline Carnegio, & WZUM 1590 & Chlakasha. Okle. KWCO 1580 & & 340 & & KODL 1440 \\
\hline aro Mleh. \({ }^{\text {a }}\) & WWRO 1580 & Chies. Calif. KHSL 1290 C & Columbus. Ind. & WCSI 1010 & Dalton, Ga. & WBLJ 1230 \\
\hline rrizo & 1450 & Chloopee, Mass. WACE 730 & & WCBI 550 m & & WRCD 1430 \\
\hline Carroli, lowa & KCIM 1880 & Chisoutimi, Que. C8J 1380 & Columbus, Nobr. & 900 & Danville, III. & WDAN 1490 \\
\hline Carrollion, Ala. & WAAG 590 & & & TTT 1510 & & WITY 980 \\
\hline Carrolition, Ga. & WLBB 1100 & Childress. Tex KCTX 1310 & Columbus, Dhio & WBNS 1480 C & & WHIR 1230 m \\
\hline Carrolition. Me. & KAOL 1430 & & & WCOL 1230 A & Danville, Va. & WBTM 1330 A \\
\hline Carson City, Nov. & KPTL 1300 & Chillisothe Ohio WBEX 1490 A & & WWNI 920 A & & WYPR 970 \\
\hline Cartersvilie, Ga, & WBHF 1450 m & & & & & \\
\hline & WKRW 1270 & Chillimeek, B.C. CHWK 1270 & & V 610 & & WILA 1580 \\
\hline Carthage, 111. & WCAZ 990 & C & & & & \\
\hline Carthage, Mo. Carthage. Tonn. & \[
\begin{gathered}
\text { KDMO } 1490 \\
\text { WRKM } 1350
\end{gathered}
\] & & & \[
\begin{gathered}
\text { KCVL } 1270 \\
W J J C 270
\end{gathered}
\] & Dauphin, Man. Davengert, lowa & \[
\begin{aligned}
& \text { CKOM } 730 \\
& \text { WOC } 1420
\end{aligned}
\] \\
\hline Carthayt. Tex. & KGAS 1590 & Christiansburs. Va. WBCR 1280 & Concord, Callf. & KWUN 1480 & & KWNT 1580 \\
\hline Caruthersville. Mo. & KCAV 1370 & Christiansted, V.I. WIVI 970 & Coneord, N.H. & WKXL 1450 C & & KSTT 1170 \\
\hline Casa Grande, Ariz. & KPIN 1280 & Chureh Hilli Tonn. WMCH 1260 & Coneord, N.C. & WEGO 1410 & Dawson. & OWD 890 \\
\hline er, Wyo. & KTWO 14700 C & Churehill. Man. CHFC 1230 & Concordla, Kans. & KNCK 13 & Dawso & 230 \\
\hline & KATI 1400 & Cleero, III. WHFC 1450 & & KFRM 550 A & Dawson Creok, & CJOC 560 \\
\hline & VOC \(1230 \mathrm{~A}-\mathrm{M}\) & Cincinnati, Ohlo WCKY 1530 m & Conneau & WWOW 1360 & Dayton. & WH1O 1290 \\
\hline Yee, & WCAY 620 C & WCIN 1480 & Connollsvilio, Pa. & & & WING 1410 \\
\hline Cedar Ci & B 390 C & WCPO 1230 & Connersvillo, Ind. & WCNE 5800 & & \\
\hline Codar Falis, lowa & KCFI 1250 & KRC 550 C & Conros,
Conway, & \[
\begin{array}{r}
\mathrm{KMCO} \\
\mathrm{KCON} \\
\mathbf{K} 230 \\
\hline 230
\end{array}
\] & & WAVI 1210 \\
\hline & \[
\begin{aligned}
& \\
& \text { KCRG } \\
& \text { KHAK } 1800 \\
& \hline
\end{aligned}
\] & \[
\begin{gathered}
\mathrm{NO} \\
\mathrm{NO}
\end{gathered}
\] & & KVEE 1380 & Daytonia Beaeh, & \\
\hline & KLWN 1450 & & & WBNC 1050 & & NDB 1150 M -A \\
\hline & MT 600 C & & & M & & \\
\hline & AA 1350 & & Cookeville, Tenn. & WHUB 1400 C & & ROD 1340 \\
\hline Celina, Ohio & WCSM 1350 & Claremont. N.H. Okla. KWPR 1270 & & WTPN 1550 & Deadwood, 8.Dak. & \[
\begin{aligned}
& 31 \\
& 14
\end{aligned}
\] \\
\hline Conter, Ala. & WE18 980 & WCH 1300 & & K00S 12300 & Decatur. Ala. & WHOS 800 \\
\hline 66 WHI & ADIO LO & Clarksburg. W.Va. WBOY 1400 N & opper & W LSB 14 & & \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline ion & C.L. Ke, N.A. & Location & C.L. Ke. N.A & tion & C.L. Ke. N. & Locoflon & C.L. Kc. N.A. \\
\hline Idsboro, N.C. & WFMC 730 WGBR 1180 & Hamilton, Mont. Hamilton. Ohle & KYLA 980 & & Al 1090 & Jaokzon, Tona. & \[
\begin{aligned}
& 11810 \\
&
\end{aligned}
\] \\
\hline & A & Hamilton, Ont. & & & 830 & & 60 \\
\hline zalay & KCTI 1400 & Hamion, & CHML 800 & & 760 & & \({ }^{\text {KSGT }} 1340{ }^{\text {a }}\) \\
\hline se Bay, Nfld & CFGB 1340 & Hamilion. Tex. & KCLW 900 & & RL 650 & Jesksonvilio.' & CM 1500 \\
\hline hen, Ind. & WKAM 1480 & Hamlot & & & KNDI 1270 & & \\
\hline ton, W. & WVVW 1230 & & WFPR 1200 & & G 990 & & \\
\hline Graham. Tex, & 1830 & & WNJH 1580 & Heod River Or & & & \\
\hline ue. & 1450 & & WBHC 1270 & Hood River, 0 & K1HR 13 & & \\
\hline Grande Prair & 1050 & & WMPL 920 & & & & \\
\hline & 540
1370 & & KMGS 620 & & 350 & & \\
\hline & \[
\begin{aligned}
& 137070 \\
& 1440
\end{aligned}
\] & & WTSL 1400 & & & & \\
\hline Haven, & KNOX 1310 m & Hanover, & 123 & & & Jacksonville, & WLNC \({ }^{1240}{ }^{\text {M }}\) \\
\hline & & & KGBT 130 & & A & & \\
\hline & A & \[
\begin{aligned}
& \mathrm{H} \\
& \mathrm{H} \\
& \hline
\end{aligned}
\] & & & & & \\
\hline Grand Junetion, & & & & & & & \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline & L 1340 & & & & & & \\
\hline & KPCW 730 & & & & & & \\
\hline & 1230 & & & & KHTN 1250 & & \\
\hline & 570 & & & & & & \\
\hline & & & & & & & \\
\hline & 480 m & & & & \(N\) & & \\
\hline Grand Rapids. & Nn. & Har & 1450 m & & & & \\
\hline & & & & & 320 A & & \\
\hline & \[
10
\] & & WWCW 160 & & & & \\
\hline Granti. N.Mex. & KMIN 980 & H & WGCH 1220 & & w & & WBGR 1370 \\
\hline ants Pass, Oreg. & - KAGI 930 m & & & & KIHN isto & & \\
\hline , & . & & & & CKCH 970 & & \\
\hline & & & & Humboldt. Teni & & & WJES 250 \\
\hline & Mast & & WXXX \({ }_{\text {che }}\) & & 300 & & W/2R 930 \\
\hline & & & & Huntington & WOSm 740 & & , \\
\hline \begin{tabular}{l}
Bend, Kans. \\
Falls. Mo
\end{tabular} & \[
\begin{array}{lll}
1500 & \mathrm{~N} \\
1310
\end{array}
\] & Ha & \[
\begin{array}{r}
14900 \mathrm{~m} \\
610 \mathrm{~m}
\end{array}
\] & & & & \\
\hline & KUDI 1450 & & & & & & \\
\hline & KARA 1400 N & & & sville, Ala & & . Que. & \[
50
\] \\
\hline Gresioy, Colo. & KFKA 1310 & & & & & & \\
\hline Grean Bay, Wla. & K & & & & & & \\
\hline & WJPG 1440 m & & & & & & \\
\hline & 1400 & & & & & & \\
\hline cenovilie, tenn. & WGRV & & & H & KIJ 1340 & Joplin, & \\
\hline & WSMG 1450 & & & & \(\mathrm{N}^{\mathrm{N}}\) & & \\
\hline & WB1G 1470 C & & & & & & \\
\hline & 1510 & & & & & & MBL 1450 \\
\hline & WGBG 1400 A & & & & \[
{ }_{0}^{590} \mathrm{~A} \cdot \mathrm{C}
\] & Jun & NY 800 C-A \\
\hline & & & & & & Kallua, Hav & KLEI ATI30, \\
\hline Greonvil & 80 & & & & & Kalua, Ha & KA1M 870 \\
\hline Groenvills, miss. & w & & & & M & & WKPR 1420 \\
\hline & w & & & Indepondenee, & & & \\
\hline & & & & Indianapolis, Iod. & & Kallsbell, Mont. & \\
\hline & & & & & - & & \\
\hline Greonville. s.C. & & & & & & Kamloops. B.C. & CFJC 910 \\
\hline & & & & & 810 & & KAN 1320 \\
\hline & & Her & WALY 1420 & & N & k & \\
\hline & & & & & & & \\
\hline & WABG 960 & \({ }^{\text {Hi}}\) & & Indianola, & OLT 1380 & & \\
\hline & & Hiekory, w.C. & & & & & \\
\hline wood, s.c. & & & & Indio. & & & \\
\hline Greor, s.c. & & & & , & A & & \\
\hline & W & & & & Minn. & N & \\
\hline Gratne. Va. & WGARO 1230 & & & & & Keone, N.H. & NNE \\
\hline Grima & WKEU 145 & & 590 & & 1370 & & WKBK 1220 \\
\hline & & & WHPE 1070 & lowa city, lowa & & & \\
\hline & KRIP 1410 & Hillabora, & WSRW 159 & & wsul 910 & Kendalliville. 1 & WAWK 1570 \\
\hline & wsus & Hillibor & KHBR 1560 & Iowa Fall & KFIG 1810 & Kene & KAML \({ }^{\text {K80A }}\) \\
\hline Grov & ws & Hilladat & WCSR 1340 & Iron Rivo & W1KB \({ }^{230}{ }^{\text {m }}\) & Kenne & \\
\hline Guay & & Hillo. Hiv & WHHV 1400 & Ira & WIXI 1480 & Wa & K \\
\hline G & CJO & нilo. & & & & & \\
\hline Guirport. & & & & & WIRV \({ }^{1550}\) & Kentvilio. N.S. & KEN 1350 \\
\hline & & & & & W/18A 1390 & & 10 \\
\hline Gunters3illic, Ala. & w & Ho & & Ish & WJPD \({ }^{1240}\) & & 30 \\
\hline Guymon, okis. & KWAW 180 & Ho & M & & WBIC 540 & & \\
\hline & & & & Ithata, N.Y. & 870 C & Ketehikan. Alask & KTKN \(930 \mathrm{C-A}\) \\
\hline & & & K & & & & \\
\hline & & & \({ }^{450}\) & & WTHG 1290 m & & \\
\hline rairway, mo. & WODW 1410 & & 520 & Jaekson, Mieh. & 18日M 1450 A & Kay West. Fla & KWF \(1800 \mathrm{~A}-\mathrm{m}\) \\
\hline & WHAG 1410 & & WGMA 1320 & & & & \\
\hline Hallifax, N.s. & & & & Jaekson, Misa. & & & \\
\hline & \[
60
\] & & WREB \({ }^{9390}\) & Jekson, mise. & S 1400 m & & \(1 \mathrm{mim}^{260}{ }^{\text {m }}\) \\
\hline & 220 & & & & WJXN 1450 & King City. Galit & KRKC 1570 \\
\hline Hamilton, Ala. & WERH 970 & Homewood. Ala. & & & WOKJ 1590 & & KAAA 1230 \\
\hline & & & & & & & \\
\hline 68 WH & & Honolulu, Hawall & \[
\begin{array}{ll}
\text { KGMB } & 590 \\
\text { K200 } & 1290
\end{array}
\] & Jackson, Ohio & LMJ & Kingsport. Tonn. & KIN \\
\hline
\end{tabular}

Location
St, Joseph, Mo.

\section*{St. Joseph d'Alma}
\begin{tabular}{|c|c|}
\hline \multirow[t]{8}{*}{St. Louls, Mo,} & KATZ 1600 \\
\hline & KFUO 850 \\
\hline & KMOX 1120 \\
\hline & KSD 550 N \\
\hline & KSTL 690 \\
\hline & KWK 1380 \\
\hline & KXOK 630 \\
\hline & WEW 770 M \\
\hline
\end{tabular}

\section*{St. Louls Park, Minn.}

St. Mary's, Pa. WKBI 1400 St. Paul, Âlínn. KSTP 1500 N KTWN 1400 St. Petersturg, Fla. WPIN 680
sz WSUN
WLCY 1380 A
St. Petersburd Beach Fia. WILZ 1590 Salamanca, N.Y. Salem, ill. Salem, Ind. Salem, Mass
Salem, Mo.
Salem,
Oreo

Salem, \(\mathbf{V a}\).
Salida, Colo.
Sallna, Kans.
Sallnas, Calif.
Salline, Mich.
Sallisbury, Md.
Salisbury, N.C.
Salmon. Idaho
Salt Lake Clty, Utah
KALL 910 A KCPX 1320 N
KLUB 570 M KNAK 1280 \begin{tabular}{l}
KSOP \\
KSOP \\
KS \\
\hline 1370
\end{tabular} KSXX
KWHO
860 KWIC 1570
 KGKL 960 A KPEP 1420
\(\qquad\) KENS 680 C \begin{tabular}{l|l|l}
\\
KENS & 680 \\
KBER & 1150 \\
\hline
\end{tabular} \begin{tabular}{c|c|c}
KITE & 930 \\
KUKA & 1250
\end{tabular} KUBO 1310 KMAC 690 A \(\begin{array}{ll}\text { KONO } & 860 \\ \text { KTSA } & 550\end{array}\)
San Bernardino, Callf

KFXM 590 \(\begin{array}{cc}\text { KRNO } & 1240 \\ \text { KMEN } & 1290\end{array}\) Sandersville. Ga, KMEN 1290 San Dlego, Callf, KCBQ 1170 \(\begin{array}{lll}\text { KFMB } & 540 & \mathrm{C} \\ \text { KOGO } & 600 & \mathrm{~N}\end{array}\) \begin{tabular}{c|cc|}
KGB & 1360 & A \\
KSON & 1240
\end{tabular} KSDD
SandpoInt, Idaho KSDO 1130
Sand Spring, Okla. KTOW 1340 San Fernando, Calif. KGIL 1260 Sanford, Fla. WTRR 1400
Sanford, Me. WSME 1360 Sanford. N.C. WEYE 1290 San Francisco.

Callis.

\(\square\)

 San Luts Oblspo. Calif.
\[
\begin{array}{ll}
& \begin{array}{l}
\text { Sar } \\
\text { Sal } \\
\text { Sar }
\end{array} \\
\hline
\end{array}
\]
San

Santa Cruz, Callf.
Santa \(F\) e, N. Mex.
\begin{tabular}{|c|}
\hline Santa Marla, Cal. \\
\hline \begin{tabular}{l}
Santa Monlea, Cal. \\
Santa Paula, Callf. \\
Santa Rosa, Callf.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{l|l}
A & \(\begin{array}{l}\text { SantaRosa, N.Mex. } \\
\text { Sapulpa, Okla. } \\
\text { N }\end{array}\) \\
\(\begin{array}{l}\text { Saranac'Lake, N.Y. } \\
\text { Sarasota, Fla. }\end{array}\) \\
&
\end{tabular}
Saratoga Springs. N
Sarnia, Ont.
Saskatoon, Sask.
Sauk Rapids, Minn Sault Ste. Marie, Sault Ste. Michigan Manie. \(\begin{array}{ll} & \text { CKCY } 920 \\ \text { Savannah. Ga. } & \text { WBYG } 1450 \mathrm{M} \\ & \text { WEAS } 900 \\ & \text { WSAV } 630 \mathrm{~N}\end{array}\) Savannah. Tenn. Schenectady. N.Y.
Scottsbluft, Nobr.
Scottsboro, Ala.
Scottsdale, Ariz.
Scotfsville, Ky.
Scrantons. Pa.

Seaford, Del.
Searcy, Ark.
Seaside, Oreq.
Seattle, Wash.
-

WTOC 1290 C
WSOK 1230 A

So

\section*{N}

M

A
C.L. Ke. N.A. WKAQ 580 C WKVM 810 WITA 1140
KIIS.
KATY 1340
KGJH 1280
KSL
\begin{tabular}{|c|c|}
\hline Locaflon & C.L. Ke. N.A. \\
\hline Shelbyville, Tenn. & WHAL 1400 WLIJ 1580 \\
\hline Shenandoah, Jowa & KMA 960 A \\
\hline Sherbrooke, Que. & \[
\begin{array}{ll}
\text { CHLT } & 630 \\
\text { CKTS } & 900
\end{array}
\] \\
\hline Sheridan, wyo. & KWYO 1410 M \\
\hline & KROE 930 \\
\hline Sherman, Tex. & KRRV 910 M \\
\hline Shippensburg, Pa. & \begin{tabular}{l}
KTXO \\
WSHP \\
\hline 1480 \\
\hline
\end{tabular} \\
\hline Show Low, Ariz. & K VWM 1050 \\
\hline Shrevepori, La, & KANB 1300 \\
\hline & KBCL 1220 \\
\hline & KCI」 1050 \\
\hline & KEEL 710 \\
\hline
\end{tabular}
A. N

KTMS 1250 A. M
KACL 1290
KSCO 1080
\(\begin{array}{lll}\text { KTRC } & 1400 & \text { A } \\ \text { KVSF } & 260 & \text { C } \\ \text { KCOY } & 1400 & \end{array}\)
KCOY 1400
KHER 1600 KSMA 1240
\begin{tabular}{ll}
& KWKH 1130 \\
KIdney, Mont. & KGCX 1480 \\
S \\
Sidney, Nebr, \\
Sler
\end{tabular}

Location
Statesville. N.C.
Statesville. N.C
Staunton, Va.
Stephenville. Tex.
Sterllng, Colo.
C.L. Ke. N.A

WSIC 1400
WDBM 550 WTON 1240
WAFC 900 WAFC 900 Sterling, Colo, KGEK 1230 Sterling, lil. WSDR 1240 Steubenville, Ohlo WSTV 1340 M Stevens Point, Wis. WSPT 1010 \(\begin{array}{ll}\text { Stillwater, Minn. WAVN } 1220 \\ \text { Stillwater, Okla, } & \text { KSPI } 780\end{array}\) Stockton, Calif. KJOY 1280
\begin{tabular}{c|c|c}
KSTN & 1420 \\
KWG & 1230
\end{tabular} Storm Lake, Iowa KAYL 990 Stratford, Ont. CJCS 1240
Streator, III. WIZZ 1250
Stroudstirg \(\begin{array}{ll}\text { Stroudsburg, Pa. WVPO } \\ \text { Stuart, Fla. } & \text { WSTU } 1450 \\ \text { WSO }\end{array}\) Stuart, Va. WHEO 1270 Sturgeon Bay, Wls. WOOR 810
Sturgis, Mlch. WSTR 1230 Stuttgart, Ark. KWAK 1240 A \(\begin{array}{lll}\text { Sudbury, Ont. CKSO } & 790 \\ & \text { CFBR } & 550\end{array}\) Suffolk, Va. WHNO 900 Sulphur, La. KIKS 1310 Sulphur'Spros.: Tex. KSST 1230 Summerside. P.E.I. CJRW 1240 Summerville, Ga. WGTA 930 Summerville, S.C. WALS 980
Sumter, S.C. \(\begin{array}{ll}\text { Sunbury, Pa. } & \text { WSSC } 1340 \\ \text { WiKOK } 1240 \\ \text { Sunnyside, Wash. KREW } 1230\end{array}\) Sunnyside, wash. KREW 1230
Sun Valley, Ida. KSKI 340 Sutjerior. Nebr. KRFS IG00 Superior, Wis. WOSM 710 N

WIGL 970
Susanville, Callf, IKSUE 1240 Swainsboro, Ga, WJAT 800
Sweetwater, Tenn, WDEH 800 \begin{tabular}{l}
Sweetwater, Tenn, WDEH 800 \\
Sweetwater, Tex, \\
\hline 0
\end{tabular} Sweetwater, Tex, KXOX 1240
Swlft Current, Sask. CKSW 1400 Sydney, N.S. CBI 1140 Sylacauga. Ala. WFEB 1340 M WTFC 1480 \(\begin{array}{ll}\text { Somerset, Pa. } & \text { WVSC } 990 \\ \text { Sonora, Calif. } & \text { KVMIL } 1450\end{array}\) Sonora, T\&x. KCKG 1240
Soren Sorel, \(P\) a South Belolt, Ill. Smithtleld, N.C. WMPM
Smlths Falls, Ont. WJET 630 Smiths Falis, Ont. WSMA 1550 \(\begin{array}{ll}\text { Snyder, Tox, } & \text { KSNY 1450 M } \\ \text { Socorro, N.Mex. } & \text { KSRC } 1290 \\ \text { Soda Sprgs. }\end{array}\) Soda Sprgs.. (daho Solvay, N.Y.

So. Bend, Ind.
southern Pines, N.C.WEEB 990 South Daytona Beach.
So. Gastonla, N.C. WGAS 1420 So. Haven, Mich. WJOR 940 So. Knoxville, Tenn. WSKT \(\$ 580\) So. Paris. Me. WKTQ 1450
So. Pittsburg, Tenn. WEPG 910 So. St. Paul, Minn. So. Willlamsport, P KDWB 630 M
Pa.

\section*{Spanish Fork, Utah}

\section*{Spar}

\section*{Spa}

Spe
Spo
Spence

U．Sa AM Stations by Call Letters
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline c．L & Locotlo & Kc． & Locatio & Kc． & C．L．Locatlon & Ke． & C．L．Location & \\
\hline & & 1230 & kban bowie，T & 1410 & KC & ， & KDOL Mojave，Calir． & \\
\hline & Hot & 13 & KBAR Burley， & 1230 & KCFH Cuer & 0 & KDOM W & \\
\hline & & 10 & KBBA B & 90 & & 50 & & \\
\hline & & & & & KCGM & & & \\
\hline & ketela & 960 & \({ }_{\text {KBBC }}\) & \％ & KCHE Che & 1 & KDON De & 1390 \\
\hline & Alb & 18 & KBBR Nor & & KСНI Ch & & & \\
\hline K & Aberd & 1420 & KBES Buffa & 1450 & KC & & & 90 \\
\hline & R1vers & 1570 & KBCH Ocea & & & 1350 & & \\
\hline & The & 13 & KBCL Shreve & & & & － & 50 \\
\hline K & Por & 15 & KBEC Waxahachie． & 1390 & & & delta，Colo． & \\
\hline KAD & Ada． & & KBEE Mode & 970 & KCHY Cheyenne，wyo． & 1590 & KDTH Dubuque． & 1370 \\
\hline KAD & Pine Bluft & 1270 & KBEK EIk City， & 1240 & KC1O Caldwell．Idano & 90 & kouz Mut & 30 \\
\hline KADO & Marshall， & 1410 & KBEL Idabei，Okla， & & \({ }_{\text {KC1I }}\) Washington， & & KDWB St．Paul， & 30 \\
\hline \[
K
\] & Petal & & K日EN Carrizo Sprgs．0．\({ }^{\text {Tex．}}\) & & KCIL Houma．La． & 1490 & KOXE & \\
\hline & Bakersfield． & & & 13 & & 0 & KDXU & \\
\hline KAG & Wir & 13 & KBEV P & 1010 & KCIN Victorville． & & KDYL \({ }^{\text {r }}\) & \\
\hline & & & KBFS B & & & 10 & & \\
\hline & Grants & 11 & K8GN Cald
KBG Waco & 1580 & K & 1280
1350 & KEAN Brownwood ilex & \\
\hline KAG & Yuba C & 1450 & KBHC Nashillie，A & 60 & kCKG Sonora， & & KEBE Jacksonville，Tox & 0 \\
\hline KAG & Anasort & \(\begin{array}{r}1340 \\ \hline 90\end{array}\) & KBHM B & 20 & KCKN Kansas C & 1340 & KECK Ode & \\
\hline KAH & ReddIn & 1330 & KBIF Fr & & & & & \\
\hline KAH & Waipahu，H & 920 & KB & 740 & KCLA Pin & 1400 & K EED Spr & 1050 \\
\hline & muk & & K81M R & 9970 & KCLE Clebur & 1120 & KEEE Naco， & \\
\hline & cess & 12 & KBIX Muskogee，\({ }^{\text {O }}\) k & & & & & \\
\hline & ran & 12 & KBIZ 0 th & 40 & KCLO Leavenworth， & 0 & KEEP T & 1450 \\
\hline & & 125 & \({ }_{\text {K8JT }}{ }^{\text {F }}\) & 1570 & & & KEESS Gladewater，Tex & \\
\hline & Tuls & & & 1490 & & 1590 & & \\
\hline & Alex & 124 & KBLA Bur & 1490 & k & 1240 & KELD EI Dorado， & 1400 \\
\hline & Richl & & kblf Red & 1490 & & & KELI Tulsa，okla． & \\
\hline & Mesa & & KBLI Blackioot．Idaho & & & & & \\
\hline & & & K & 1550 & \({ }_{\text {KCM }}\) KCM Paxarkana， & 1230 & & \\
\hline & & & \({ }_{\text {KBLL }} \mathrm{KBL}\) & 1320 & KC & ， & KELR EI Reno，okla． & 1460 \\
\hline KALM & Thayer， & 1290 & kBLY Gold & & M & & & \\
\hline KALN & lola， & 1370 & KB & & & & & \\
\hline KA & Allva & 1430 & K & 1290 & San & 1470 & ）A & 50 \\
\hline KAMD & Camden． & 910 & bre & & & & L & \\
\hline & Kenedy， & & KBMX Coall & 14 & & 1400 & K & 90 \\
\hline & & 1390 & & & & 1430 & & \\
\hline MP & EICentro，Cal & 14 & KBNO Ben & 10 & & 10 & KENO & \\
\hline K \({ }^{\text {A }}\) & Anaconda．Mo & & KBOE Oskaloosa，lowa & & KCON Conway & 1230 & KENY Bellingham－- erndale． & \\
\hline & & 13 & KBOI Boise， & 950 & KCOR San A & 50 & & \\
\hline KAND & Corsi & & KBOK Malvern，Ar & 1310 & & 00 & & \\
\hline & New & 1240
1500 & KBOL Boulder KBOM Bismar & & KCOY Santa Maria
KCPX Salt Lake & 000 & KEOS Fland & \\
\hline & Ooden， & 1250 & N．Dak． & 70 & KCRA Saera & 20 & & \\
\hline & Anoka， & & KBON Omaha．Nebr． & & & & KERB K & 600 \\
\hline NS & Independe & 1510 & K & 1380 & KCRC Enid，Okla， & \({ }_{1600}\) & & \\
\hline & Lake & 14 & & 1490 & & 80 & KERN Baker & 1410 \\
\hline & Carro & 1430 & K80 & 1480 & KC & 促 & KERV Kerr & \\
\hline & & & KBOY mediord， & & & 19 & & \\
\hline KAPA & Raymond，Was & & KBPS Portla & 1430 & & （1900 & 0 Seatte，Wa & 1590 \\
\hline & San Antorio． & 1480 & KBR1 Brinkt & 1570 & CSP & 1450 & KETX Livi & 1 \\
\hline & Pueblo．Colo． & & & & KCTA Corpus Christi，Tex． & & KEUN EUnic & \\
\hline KAPR & Dous & 142 & K8 & 0 & KCTI Gonzales，Tex & 990 & KEVE W & 90 \\
\hline & & 12 & KBRO Brem & 1490 & Childress．Tex & & KEVI & \\
\hline & Port & & KRRR Leadville，Colo． & 1230 & KCUB Tucso & 1290 & K & 910 \\
\hline & Albuquerque & 1310 & KBRS Springda & 1340 & KCUE Red & 1250 & KEWITOP & \\
\hline & Atchis & 1470 & KBRV Soda Spros．i． & 40 & KCUL Fort & 1540 & K EX Port & \\
\hline & & 920 & & 1460 & KCVL Colvill & & KEYO Oakes，N．D． & \\
\hline & Fresno． & 1430 & KBSF Springhill，La． & 1460 & KCYL Lampas & 1450 & & \\
\hline KARR & Great Falls，MO & 1400 & KBST Big Spring．T & 1490 & Arvad & 50 & me & \\
\hline & & & KBTA & 1340 & KDAC Ft． & 1230 & KEYL Lond & 490 \\
\hline KART & Jero & 14 & K & & KDAO Weed，Calif & 0 & KEYS Cor & \\
\hline & & 1310
970 & K & \[
\begin{aligned}
& 1230 \\
& 1420
\end{aligned}
\] & KDAK Ca & 610 & KEYY Prow & 1450 \\
\hline & Eupen & 1600 & KBTO EI Dorado．Ka & 1360 & & 析 & Wil & \\
\hline & mos， & 1430 & KBTR Denver． & & KDAV Lubbeck． & & KEZY A & \\
\hline KASK & Ontario．Call & & KBUC Corona．Callif． & 1370 & KDAY Santa Monica．Calif． & & KEZY A & \\
\hline ASL & Nowcastio， & 1240 & KBUD Athe & 1410 & Ca & 0 & KFAB & \\
\hline & Mlnden． & & KBUN Bemidji，Mi & 1450 & KDGM Dillon，Mon & & KFAL & \\
\hline K & Astoria， 0 & 1970 & KBUR Burlington，Lowa & 1490
1590 & \(\mathrm{KOBS}^{\text {O }}\) Alexandrla， & 0 & \({ }_{\text {KFAM }}^{\text {KFAR }}\) & \\
\hline & Auburn，Wash． & \({ }_{1}^{1220}\) & KBUY Amarillo，T & 1010 & KDEO Decorah． & \(\begin{array}{r}1240 \\ \hline 80\end{array}\) & kfax Sa & \\
\hline A & & 14 & KBUZ Mesa & 10 & KDEF Alb & 50 & KFAY & \\
\hline KA & Miles & 1010 & KBVU Bel & 1540 & KOEN Dei & 910 & \({ }_{\text {KF }}\) KC Chey & \\
\hline kato & Safford． & 1230 & K & 13 & KDES Palm Sorgs．，Cal & & KFBK Sacramento，Cal & \\
\hline & Texarkana & 1320 & K8 & 14 & & \({ }_{590}^{930}\) & KFDA Amarilio．Tex． & 1440 \\
\hline KA & San Luís Obispo，Cal． & 13 & KBYP Shamrock，Tex． & & KDEY Bou & 50 & KFDF \(V\) & \\
\hline KATZ & St．Louis， & \(1 \begin{aligned} & 1600 \\ & 1480\end{aligned}\) & KBYR Anchorage，Alaska & 1270
1490 & & 1240 & & \\
\hline & Carlsbad，N．M． & 1240 & KB2z Lajunta，Colo． & 1400 & Cali & 250 & KFDR Grand Coulee， & \\
\hline & Rocky Ford， & 1320 & KCAC Phoenix．Ariz． & 1010 & KDHL Faribauit，Min & \({ }_{1310}^{920}\) & KFEQ St & \\
\hline KAVR & A pole Vailley，Calli． & & KCAL Rodlands，Calit． & 1410 & KDio Ortonvilie，Mi & 1350 & KFFA & \\
\hline & Waco，Tex． & 1010 & KCAP Helena，Mont． & 1340 & KOIX Dickinson，N．Dal & 1230 & KFGO Fa & \\
\hline & York．Nob & 1370 & KCAR Clarksville，Tex． & 1350 & KDJI Holbrook．Ari & 1270 & KFGa Bo & \\
\hline & Douglas．A & & & 1050 & KD & 1020 & & \\
\hline & Buau & 14 & Kc & 1590 & k0 & 1010 & KFIF & \\
\hline & Layallup ， & 1480 & KCBD & 1170 & & 1230 & KF & \\
\hline Kar & storm Lake & & & 740 & KDLM Detroit Lakes．Minn． & 1340 & KF & \\
\hline K & & & & 60 & & & & \\
\hline KA & Hays & 14 & & 硣 & & 1310 & KFJM Grand Forks，N．Dak & \\
\hline K & & 970
1410 & & 1590
1150 & KD & 1490 & KFKA Gi & 310 \\
\hline KBAM & Longview，Wash． & \[
1270
\] & KCDI Kirpland．Wash & & KDMS EI Dorado．AP & 1290 & Kfkf Bellevue，Wash． & 1330 \\
\hline & & & － & & KDNT Denton，Tex． & & nce，Kans． & \\
\hline 74 & WHIES RAD & & & & & & & \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline C.L. Location & & C.L. Location & & & Ke. & & \\
\hline K0ME Tulsa okia & 11300 & KRAK Stockton, Callf. & \({ }_{1240}^{140}\) & KSIX Corrus Chr & 1230 & \({ }_{\text {KTR H Houston }}\) & 0 \\
\hline K0MW Omak, & 680 & K RAM Las veg & 920 & KSki & & KTRM B Baumm & \\
\hline NE Reno. & l 1340 & & \(\underset{1}{12300}\) & & \({ }_{1}^{650}\) & & \\
\hline NG visalia & 1400 & & \({ }^{1340}\) & & & & 50 \\
\hline KON Spanish Fork & \(\begin{array}{r}1480 \\ \hline 60\end{array}\) & & \(\underset{1310}{1430}\) & \({ }_{\text {KSLLO }} \mathrm{O}\) Opelo & \({ }_{1240}^{230}\) & & 80 \\
\hline NP Port & 1450 & & 1450 & & 1240 & & \\
\hline Ok Billin & & & & ks & & & \\
\hline & 960
1420 & & -139 & KSMO Sal & 390 & & 0 \\
\hline \({ }_{\text {KOPa }}^{\text {Kois }}\) coos & \({ }^{230}\) & & & & & & \\
\hline & & & 1240 & KSNY Anyd & 1250 & & \({ }^{2680}\) \\
\hline Bellit & & & & & & & \\
\hline \({ }_{\text {KORA }}\) Krya & 1240
1240 & KREB Shreveport, & 19800 & KS & 1280 & & \\
\hline KORD Pasco, & 910 & \({ }_{\text {KREH }}\) & & KSOO Sioux & & & 50 \\
\hline KORE Eusene & 14 & & & & & & \\
\hline vepas & & Stay & \({ }^{15950}\) & \({ }_{\text {KSox }}{ }_{\text {KSPa }}\) Raymo & 1240 1400 & & 10 \\
\hline OORT Grandeville, & 1230 & KREED Indio, Callf & & & & & \\
\hline KOSA Odessa, Tex. & 1860 & KREW Sunyside, & & \({ }_{\text {KSPL }}^{\text {KSPT }}\) & \({ }_{1200}^{260}\) & & \\
\hline kosil Aurora & 1430 & & 1390 & KSRA Salm & 960 & & 50 \\
\hline oxark & & & & & & & \\
\hline KOTE Feruus & 1250 & kR & 1290 & Ks & 1950 & KUEN Wen & 00 \\
\hline & & & & & & & \\
\hline & \({ }^{220}\) & кR & 1410 & & & кUIK Huls & \\
\hline alley city, N.Oak. & & KRIH Ra & & & & & \\
\hline , & 9 & к月 & 1230 & KSTH & 1600 & & \\
\hline K0WB Laramie, Wyo. & 1290 & & (1570 & & & & \\
\hline KOWN Escondido. & 1450 & k & 1380 & KSTP St. & 500 & KU & \\
\hline Koxe \({ }^{\text {Oxnara }}\) & \({ }_{5}^{915}\) & & 1990 & nd Junet & & & \\
\hline Koym odess & 1310 & KRLD Dallas & & KSTV Stephenvilito, & 1510 & & 30 \\
\hline KOYN Billin & 9910 & KRLN Canon city colo & & \({ }_{\text {KSU }}^{\text {KSU }}\) Cedar & \({ }_{730}^{590}\) & KUNO Corp & \\
\hline & & kRmd sh & 1340 & KSUE Susa & & & 70 \\
\hline KP & 12 & KRMMG Musa, okta, & 740
140 & KSUM Fairm & 12300 & KUpD Tompee Ariz.' & \\
\hline & 1240 & 0 & & Rile & & & \\
\hline Sam, & 1410 & KRNO San Bernardino, & & KSVP Artesia, N . \({ }^{\text {m }}\) & 990 & & \\
\hline Red & \({ }_{1260}^{870}\) & KRNR Roseburg, ore & \({ }_{1230}^{1490}\) & KSWA Grana & \(1{ }_{1530}^{1330}\) & KURY Brooki & \\
\hline KPAS Bannino, Calit. & & KRNT Des Moilines, lowa & & & & ush & \\
\hline & & KRNY Kearney, Neorr. & 1464 & Luror & 1394 & KUN St & 900 \\
\hline E & \({ }_{7} 750\) & & \({ }_{930}\) & kSXX Salt & & & \\
\hline KPCA Marked Pree, Ark. & 1580 & & & L Alexandria, & \({ }^{7}\) & malm & 1470 \\
\hline crand & \({ }^{738}\) & KRop brawley & & KSYX Santa & 200 & KUYR Holde & \\
\hline KPDO Pama & \({ }_{8}^{880}\) & \({ }^{\text {KRoW }}\) Kintan, & & KTAE Tay & & KUZN \(w\). & 0 \\
\hline Spoka & \({ }_{1428}^{1380}\) & \({ }_{\text {KROX Crooks }}^{\text {KROY }}\) & 1240 & \({ }_{\text {KTAA }}^{\text {KTAN }}\) Tub & \({ }_{560} 58\) & KVAN Van & 80 \\
\hline \({ }_{\text {KPEP }}^{\text {KPEP }}\) STan & \(\underset{1}{1420}\) & KRPL Moscows Idaho
KRR
Ruidioso,
N.M Mex, & 1340 & KTAT Fred & & KV & 50 \\
\hline & & & & & & & \\
\hline & 910 & KRSC \({ }_{\text {k }}\) & 1340 & KTCB Malden, Moo, & \({ }_{690}\) & & 30 \\
\hline ado & 1589 & kRSI St. Louls Park, Minn. & 950 & kTCS Fort Smith. Ark. & 1410 & & 70 \\
\hline Grande, Ariz. & 1250 & & - 19980 & KT00 Toledo , ores, & & KVE & 50 \\
\hline PPLA Plainulew, Tex. & 1050 & \(Y\) Roswell. & 1230 & KTEL Walla wa & & & \\
\hline & 1480 & & 900 & & \begin{tabular}{l}
1400 \\
1340 \\
\hline
\end{tabular} & KVFC Corter. & 400 \\
\hline - & 1220 & KRUN Ballin nert, & 1490 & \({ }^{\text {KIER }}\) KTer \({ }^{\text {KTral }}\) & 1575 & \({ }^{\mathrm{K} V G B}\) Grat & 70 \\
\hline KPMC Bakersfield, Caliti. & 1560 & KRUX \({ }^{\text {chender }}\) & 1960 & KTFO Semin & & & \\
\hline KPNG Port Nethes, Tex. & 11 & KRYC Ashand & 1350 & KKFS Texarkan & 1300 & KVIL Hion & \\
\hline KPPOD Cressent city, Callf. & 3 & KRXK Rexbu & 1230 & KTHE Thermodolis, Wyo & \({ }^{1240}\) & & 70 \\
\hline & \({ }_{1380}\) & & 1280 & KTHS Breryville, Ark. & & KVKM Mo & \\
\hline & 13930 & KR2Y Albuaueraue, & 15800 & \({ }_{\text {KTHT }}{ }_{\text {KTHE }}\) & & Clevold & 50 \\
\hline & & & & & & & \\
\hline KPON Andersin. Calif. & 1580 & KSAM Hunts & 14900 & \({ }^{\text {KTIM }}\) STan & & & 70 \\
\hline & 1370 & KSA S San Franiscoo, Clatio & & KT1s min & & & \\
\hline & 1240 & Ks & & & & & \\
\hline KPRB Redmond, Ore0. & -1240 & KSCl
KSCO
Sioux
Santa City
cruz. & \({ }_{1}^{1960}\) & KTKR Taft Calit & 10 & KV & \\
\hline , \({ }^{\text {no }}\) & 1340 & KSD st. Louis, Ms & 555 & \({ }^{1}\) TLL \({ }^{\text {d }}\) & 50 & & 10 \\
\hline KPRL Paso Robles. Cait & 1230 & KSDN Aborde & \({ }^{1930}\) & KTLN Denver, Colo & & KVN & 10 \\
\hline \({ }_{\text {KPRSS }}\) Kansas City, Mo. & 1599 & KSD R Waterton, & & \({ }^{\text {KTLL }}\) K \({ }^{\text {Tan }}\) & 1350 & & \\
\hline kpso falfurrias, To & 1260 & KSEI Pooat & 9930 & \({ }_{\text {KTL }}\) KTex & & & \\
\hline \({ }_{\text {KPTL }}\) & 130 & K & 13900 & KTMS Smi & & & +430 \\
\hline & 1970 & KSEM Mo & 1470 & KTNM Tuc & & KVOM Lafayeito, La, & 1300 \\
\hline & \begin{tabular}{|c}
1280 \\
1350 \\
\hline
\end{tabular} & KSEO & 750
1340 & KTNT Tace & & & \\
\hline Kai Minot, N. Dak & \begin{tabular}{|c}
1320 \\
1250 \\
1250
\end{tabular} & KSEW Sitka, Alaska & 1230 & KTOO Sinto & & K VOR COIT & \\
\hline Abug & & KSFA Nacodioches, Tex. & & KTOH Lihuer Hawall & & & 400 \\
\hline & & & & Beltom, Tox. & & KVox moorread, min. & 80 \\
\hline oula, & 1340 & KSGM Chester, III. & & \({ }_{\text {KT }}\) & & & \\
\hline & 1560 & KStig crestor, & -1520 & KTow sand spans, okla. & & & 50 \\
\hline For & & K & & & & & 1240 \\
\hline KRAE Cheyonne, Wyo. Colo & \[
\begin{gathered}
14850 \\
\hline 500 \\
500
\end{gathered}
\] & KSIL Silver City N.Mor & & Sa & 420 & & 60 \\
\hline & & kans. & & KTRF Thiof River Falls. & & & \({ }^{40}\) \\
\hline & & Woodward. okla & & ktre Honolutu, Hawali & & KVSA McGehee, Ark. & 1220 \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline c. & & & & & C.L. & Location & & & & c. \\
\hline WVLK Laxington, Ky. & \[
590
\] & \[
\begin{aligned}
& \text { wwin } \\
& \text { wwis }
\end{aligned}
\] & & 1400 & w & Wheelt & 1170 & Wr & Manning. s.c. & 10 \\
\hline WVMC MI. Carmel, III. & 740
1360 & wwis & & & \({ }_{\text {W W W W }}{ }_{\text {W }}\) & jatoper, Al & 1360 & WY & Sarasot & \\
\hline WVM1 Billoxi, & 5150 & & Canton, N.C. & 70 & ww & Rus & \({ }_{920}^{990}\) & & & \\
\hline WYNJ Nawar & & Ww & & \({ }_{850}^{1889}\) & & & 1520
1450 & & Flareme & 5 \\
\hline WVOE Chadbuirn & 1590 & WW & Brooksville. Fla. & 1450 & & & & & & \\
\hline WVOH Hazelin & 920 & & & 1880 & Wwo & Pinevilio. & & WYN & & \({ }_{20} 9\) \\
\hline WVOL Berry Hilim, \({ }^{\text {Wennn. }}\) & 1470 & w & & 1870
1470 & & Dompopils, & 1400 & & & 550 \\
\hline WVom luka, M & 1270 & & & 570 & w×1G & indemere, fia. & 1880 & & & 70 \\
\hline wYop vidalia, & 970
1240 & w & Bed & 930
620 & \({ }^{\mathbf{w}} \times \times\) ¢L & ublin, Gia. & 1230 & & Lout & 1480
1480 \\
\hline w VOT Wilisen, & & w & ta & 1240 & \({ }_{W} \times\) LL & 1 Dolta, Alaika & 980 & & Lakel & 1330 \\
\hline WVOX Now R & 1460 & WWN & Watertown, N: & 790 & WXMT & Merrill & \({ }^{950}\) & & clint & 80 \\
\hline WYSC somers & 990 & wwo & & 1390
1490 & W×OK & Baton & 1260 & & 8uñ & 1480 \\
\hline - & 1260 & Wwo & Buff & 1120 & W×TN & Lexin & 1150 & & Fran & 50 \\
\hline WWBD Bay city, \({ }^{\text {W }}\) & 1250
790 & WWOM & Now Orieans, La & 1800 & WXTR & Pamtu & 550 & & Roecky Mon & \\
\hline WW Bz Vineland, N.J. & 1360 & wwow & Conneaut, ohio & 1240 & Wx & harloston, & 1550 & & & O \\
\hline w WCA Gary, ind. & 1270 & WWPA & Williamapert, Pa. & 1340 & WX & Jeffersonville & 00 & & , & \\
\hline WWCC Bram & 1440 & WWPF & Palatka, fla. & 1280 & WXY1 & Jamestown, & & & defun & \\
\hline WWCO Clario & & RI & arlic. R.t. & 1450 & w & Detrolt, & & & & 1580 \\
\hline WW0C waterb & 1240 & WWR1 & ite River June., \(V\) & & WYaL & Seotland Nock, N.C. & 1280 & & & \\
\hline WWGP Santord. \(N\) & 280
1050 & WWRO & Woodside. N.Y. & 1380 & WYAM & sssamar, A & 1450 & W20 & Jackionville. & 1320 \\
\hline GS Titton & 1430 & & Glens falls, n.Y. & 1450 & WYOE & ork, S.c. \({ }^{\text {chemin }}\) & 0 & & & \\
\hline HG Hornell. N & & WWSR & St. Albans. Vi. & 1420 & WYG0 & 既mingham, Ala. & & & ghyr & \\
\hline HY Huntington, & 1470 & wwst & Woostor. Ohio & 960 & WYHE & & & & & \\
\hline fi. Laudardale, Fla. & 1580 & wsw & Pittsburgh, Pa. & 970 & WYLD & New Orieans. L & 940 & & wan, Ten & \[
\begin{aligned}
& 1010 \\
& 1440
\end{aligned}
\] \\
\hline
\end{tabular}

\section*{C.L. Locotion}

CBA Snekville, N. \(\mathrm{B}_{\text {, }}\)
CBE montion, N.B.
CBE windsor, Ont.
cBG Gandor, Nfod.
СВ Hallax, N.S.
CBI Sydnay, N.8.
CBJ Chiseoutimi, Qua
CBK Renina, Sial
CBL Toronto, Ont
CBM Moatreal, Que.
CBN St Joln's. Nid.
CBO Ottawa, Ont.
CBT Grand Falls, NAd
CBU Vaneouver, B.C.
CBV Quebee, Que.
CBW Winnipes, Man.
CBX Edmonton, Alta.
CBXA Edmanton. Alta.
CFAB Windsor, N.S.
CFAB Windsor, N.S.
CFAC Calgary, Alta.
GFAR FIIO Fion, Man.
CFAR FIV Fiom, Man.
CFAX Vaint lohn, N.B.
CFBC 8aint John. N.B.
CFBR Sudbury, Ont.
CFBR Sudbury Ont.
CFECB Corner Book.
CFCF Montroal, Que.
CFCCH North Bay, Dnt.
CFCN Calmine OnL
CFCN Caidary. Aita
CFCP Courtenay, B.C
CFCW Camrose, Alta.
CFCW Camrose, AIta.
CFEA Victoriaville. Que.
CFGB Goose Bay. Nfid.
CFGM Aichmend HIII, Ont.
CFGR GPavalbourg, Sask.
CFIC Kamloops. B,C.
CFJR Brockville, Ont.
CFKL Sehefferville. Que.
CFML Cornwell One
CFNB Frodericton, N.B
CFNS Saskatoon. Sask
CFNW Nerman Wells. CFOB Fort Frances, Ont. CFOR Orillis, Ont.
CFOS Owen Sound, Ont. CFOX Peinte Claire. Que. CFPA Port Arthur, Ont. CFPL Lendon, Ont.
CFPR Prinee Rupert, B.C. CFQC Saskatoon. Sask CFRA Ottawa. Ont.

Canadian AM Stations By Call Letters

\section*{Mexican and Cuban AM Stations}

Mexican stations audible in the Southwest; the more powerful Cuban stations
Location C.L. Kc. W.P. Locaflon

Mexico
BAJA CALIFORNIA
\begin{tabular}{llll}
& & \\
Cuarvos & XEDY & 1460 & 1000 \\
EI Saugal & XEDX & 1010 & 500 \\
Ensenada & XEPF & 1400 & 250 \\
Mexieall & XEXK & 820 & 250 \\
& XED & 1050 & 5000 \\
\hline
\end{tabular}
\begin{tabular}{crr}
C.L. & Kc. & W.P. \\
XEAA & 1340 & 250 \\
XEAO & 910 & 250 \\
XECL & 990 & 5000 \\
XEGE & 1150 & 1000 \\
XEC & 1310 & 250 \\
XETAA & 890 & 50000 \\
XEAU & 1470 & 5000 \\
XEAZ & 1270 & 500 \\
XEBG & 1550 & 1000 \\
XEGM & 950 & 2500 \\
XEMO & 880 & 5000 \\
XEXX & 1420 & 2000
\end{tabular}

\section*{U. S. FM Stations by States}

\section*{Abbreviations: Mc., megacycles; asterisk (*) indicates educational station}

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline catlon & C. 1 & Location & M & atlo & C.L. Mc. & \multirow[t]{6}{*}{Location} & \multirow[t]{2}{*}{C.L. Mc.} \\
\hline mlaml Beach & WKAT.FM 93. WAEZ.FM 94.9 & Taylorville & \[
\text { WGGM } 95.0
\] & \multirow[t]{2}{*}{New Orleans} & WBEH 89.3 & & \\
\hline & WMBM.FM 93.9 & Wheaton & & & WDSU.FM \({ }_{\text {WRCM }} 105.3\) & & WMAX-FM 101.3 \\
\hline \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { Ocala } \\
& \text { Orlando }
\end{aligned}
\]} & WMOP-FM 93.7 & Winnetka & WNTH *88.1 & & WMMT 95. & & OD.FM 105.7 (s) \\
\hline & WDBO.FM 92.3 & \multicolumn{2}{|r|}{\multirow[b]{2}{*}{INDIANA}} & Shreveport & & & \\
\hline & & & & & KBCL-FM 96.5 & & WKLW.FM 95.7 \\
\hline \multirow[t]{3}{*}{\begin{tabular}{l}
Palm Beach Ponsatola \\
St. Potersburg
\end{tabular}} & WOXT-FM 97.9 & Anderson & WAFM 97.9 & & KWKH.FM 94.5 & Gr & \\
\hline & & & WTTV.EM \({ }^{\text {W }}\) 92.7 & & MAINE & Hlohland Pk. & WHPR *88.1 \\
\hline & 199.5 & Columbus & WCSI.FM 98.3 & Aubusta & AU.FM 101.3 & Holland & WJBL.FM 94.5 \\
\hline \multirow[t]{3}{*}{Sarasota Tallahassee} & 102.5 & Conners & WCNB-FM 100.3 & & WABIFM 97.1 & Hougton & \\
\hline & WFSU.FM -91.5 & Crawfordsville & WBBS.FM 106.3 & C & WBOR *9.1 & & 3.1 \\
\hline & BGM-FM 98.9 & Elkhart & WCMR.FM 95.1 & & WFST-FM 97.7 & & \\
\hline \multirow[t]{3}{*}{Tampa} & (eaE-FM 100.7 & Evanswille & 10.7 & & WRR 915 & Lansing & WMCR 102.1 \\
\hline & & Evanswilio & WEVC \({ }^{\text {O }}\) Oi. 5 & & WMEBEFM 91.9 & & WMTRTFM 100.7 \\
\hline & WTUN *88.9 & & WPSR 90.7 & Poland Springs & WMTW.FM 94.9 & Midland & WOOC.FM 99.7 \\
\hline Winter Pa & WPRK "91.5 & Franklin & FCI *89.3 & & WLOB-FM 97.9 & Oak Park & S WBREFMM \({ }^{\text {Whem }}\) (02.7 \\
\hline \multicolumn{2}{|r|}{GEORGIA} & Frankfor Fort Wa & WILO.FM
WPTH
W9,
W9, & \multicolumn{2}{|r|}{MARYLAND} & Royal Oak & WOAK \({ }^{89} \mathbf{8 5}\) \\
\hline \multirow[t]{4}{*}{Athens Attanta} & WAU-F & & WGVE "88.1 & \multirow[t]{3}{*}{Annapolls} & WNAV.FM 99.1 & Sa & WOMC 104.3 \\
\hline & WABE -90.1 & Greencas & WGAE -91.7 & & NNXM
WTC
X
107.9 & Sturgis & WSTR-FM 103.1 \\
\hline & WPLO.FM 103.3 & Green & WSMJ 99.5 & & QE-FM 101.9 & \multicolumn{2}{|r|}{MINNESOTA} \\
\hline & WGKA.FM & Hartio & .91.9 & \multirow[t]{6}{*}{Baltimore} & 102.7 & & \\
\hline Augusta & WAUG.FM 105.7 & Huntlinato & WVSH *91.9 & & WCBM.FM 106.5 & Mankato & KYSM.FM 103.5 \\
\hline \multirow[b]{2}{*}{Columbus} & WBBa.FM 103.7 & Indianapolis & & & WFMM. & Minneapolis & KTIS.FM "98.5 \\
\hline & WRBL-FM 93.3 & & WISH.FM 107.9 & & \({ }_{\text {WSES }}{ }^{\text {Wrin }}\) 92.3 & & 97.5 \\
\hline Gainesulito & WOUN.FM 103.9 & \& & WA1V 105.7 & & WBAL.FM 97.9 & & WPBC:FM 100.3 \\
\hline \multirow[t]{3}{*}{Macon \({ }_{\text {Marietta }}\)} & WMAZ.FM 99:1 & & WFBM.FM 94.7 & & WITH-FM 104.3 & & WAYL 96.1 \\
\hline & WBIE-FM 101.5 & & WFMS \({ }_{\text {WIAN }} 95.5\) & Bethesda & WSID.FM 92.3 & St. Cloud & FAM-FM 104.7 \\
\hline & & & WIBC.FM 93.1 & & WHFS.FM 102.5 & St. Paul & KNOF \({ }^{\text {K }}\) \\
\hline \multirow[t]{3}{*}{\begin{tabular}{l}
Newnan \\
Savannah \\
Swainsboro \\
Toccoa
\end{tabular}} & WTOC.FM 97.3 & Jasper & WIT2.FM 104.7 & Bradbury He & W WPGC 95.5 & Worthington & KWOA.FM 94.9 \\
\hline & WJAT.FM 101.7 & & WORX.FM & & WFMM.FM 102.9 & & IS \\
\hline & WLET-FM 106.1 & Marion & WMR1.FM \({ }^{\text {86.7 }}\) & & W & & ISSIPry \\
\hline \multicolumn{2}{|r|}{HAWAll} & & WBST -90.7 & & WARK.FM 106.9 & Jackson & WJDX.FM 102.9 \\
\hline Honolutu & KAIM.FM 95.5 & Muncle & WMUN 104.1 & Havre de Grace & WASA.FM & Merid & WSMM1 \(=88.1\) \\
\hline & KVOK *88.1 & New Alb & WWAS \({ }^{\text {W8. }}\) W 81.1 & Tacoma P & & & \\
\hline & KUOH - 90.5 & New Castl & WCTW-FM 102.5 & & WSMD 104.1 & ISS & SOURI \\
\hline \multicolumn{2}{|r|}{IDAHO} & & WRWYSN -91.1 & & TR.FM 100.7 & Clayton & KFUO.FM 99.1 \\
\hline \multirow[t]{3}{*}{Bolse
Lewiston
Pocatello} & O1.FM 97.9 & Richmo & WGLM 96.1 & \multicolumn{2}{|l|}{MASSACHUSETTS} & & KSYN 96.5 \\
\hline & KE.FM \({ }^{\text {K }}\) 96L 96.7 & Seymour & SIM-FM \({ }_{\text {WJOO }} 98.98\) & Am & WAMF :88.1 & Kansas city & \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{ILLINOIS}} & South Bend & WETL -91.9 & & w & & KTSR \(\quad 90.1\) \\
\hline & & & NDU.FM 92.9 & \multirow[t]{2}{*}{Boston} & WBUR -90.9 & & WDAF.FM 102.1 \\
\hline Alton ILLIN & WOKZ.FM 100.3 & Terre Haute & \begin{tabular}{l}
WTHPFR \\
WF \\
\hline
\end{tabular} & & WBCN 104.1 & & CUR.FM \begin{tabular}{c}
KCM \\
\hline 89.3
\end{tabular} \\
\hline & WRA.FM 92.7 & Terre Hauto & WVTS \(100.7(\mathrm{~s})\) & & & & KMBC.FM \({ }^{\text {K9.7 }}\) \\
\hline \({ }_{\text {Aldington }}\) & WKKD.FM 929.9 & Wabash & WRSWSISM 91.3 & & WEET.FM 103.3 & & KXTR 96.5 \\
\hline \multirow[t]{2}{*}{\({ }^{\text {Carbondals }}\)} & WJBC-FM 01.5 & Washingt & WRSWFML 106.5 & & WERS -88.9 & Peplar & \begin{tabular}{ll}
KBOA.FM \\
KWOC.FM & 98.9 \\
\hline 98.5
\end{tabular} \\
\hline & WSIU "91.9 & West Lafayette & WBAA.FM \({ }^{\text {W9.1 }}\) & & OH.FM 94.5 & St. Joseph & KUSN.FM 105.1 \\
\hline Chamidalen & & West Lameto & & & KKOFM 98.5 & \multirow[t]{6}{*}{St. Louls} & KCFM 93.7 \\
\hline \({ }_{\text {Champalon }}^{\text {Chicago }}\) & WBEM.FM 97.5 & \multicolumn{2}{|r|}{IOWA} & \multirow[t]{3}{*}{Brockton Brookline Cambrldge} & WBET.FM 96.7 & & KADI 96.5 \\
\hline & & Am & W01.FM *90.1 & & WBOS.FM 92.9 & & AMV.FM 10.1 \\
\hline & WCLM 101.9 & & & & WGBH.FM *89.7 & & WIL.FM . 92.3 \\
\hline & WDHF 95.5 & Cedar F & KTCF -88.1 & & WHRB.FM 95.3 & & \\
\hline & WEEM 93.9 & Cedar Rapids & KHAK-FM 98.1 & & WFGM-FM 104.7 & & KWIX 102.5 \\
\hline & WEHS 97.9 & Davenport & KWOC.FM 103.7 & \multirow[t]{2}{*}{Fitchburg
Framingham
Greenfild} & WKOX.FM 105.7 & Sprinsfeld & KRFD \({ }_{\text {KTS }}\) \\
\hline & NR.FM 94.7 & Des Moines & KDPS "88.1 & & WHAL.FM 98.3 & Springneld & \\
\hline & WFMQ 107.5 & & & Lawrence & WHAWGHS 93.7 & West Plal & KWPM.FM 93.9 \\
\hline & WFMT 98.7 & & HO.FM 100.3 & Lowell & LLLH.FM 99.5 & NEBR & RASKA \\
\hline & WKFM 103.5 & Iowa City & (\({ }^{\text {a }}\) & & & & \\
\hline & WMBIFM 9001 & Muscating & \(\begin{array}{cc}\text { PC.FM } & 99.7 \\ \text { KDVR } & 97.9\end{array}\) & Medford & WISK 107.9 & Kearney. Holdr & KRNY.FM 98.9 \\
\hline & & \(\underset{\text { Storm }}{\text { Waverty }}\) & KAYL.FM 101.5 & Now Bed & WBSM.FM 97.3 & Lexinoton & KRUN-FM 93.1 \\
\hline \multirow[b]{2}{*}{Deeatur} & & Waverly & KWAR 89.1 & & WM.FM 98.1 & \multirow[t]{2}{*}{Onaha} & \(\begin{array}{cc}\text { KFMO } & 95.3\end{array}\) \\
\hline & WSOY-FM 102.9 & \multicolumn{2}{|r|}{\multirow[t]{2}{*}{KANSAS}} & \multirow[t]{2}{*}{\begin{tabular}{l}
Plymouth \\
S. Hadley \\
Springfeld
\end{tabular}} & WMHC - \({ }^{\text {B8. } 5}\) & & \(\begin{array}{ll}\text { KQAL.FM } \\ \text { KFAB.FM } & 94.3 \\ & 99.9\end{array}\) \\
\hline & WNIC 91.1 & & & & YN.FM & & \\
\hline \multirow[t]{2}{*}{(e. St. Louls} & WB8R 101.1 & Emporia & KSTE *88.7 & & WEDK :91.7 & & KICN 96.i \\
\hline & WSEE 95.7 & Kansas City & KCJC 98.1 & & 88.9 & Scotsbluff & KNEW.FM 94.1 \\
\hline Effingham & WELG 103.9 & Lawrence & & \multirow[t]{6}{*}{\begin{tabular}{l}
Waltham \\
W. Yarmouth \\
Willamstown \\
Winchester \\
Worcester
\end{tabular}} & (1) & \multicolumn{2}{|r|}{\multirow[t]{2}{*}{NEVADA}} \\
\hline & WRMNFPS & Manhattan & \({ }_{\text {KSDB.FM }}\) & & & & \\
\hline Elmwood Park & WXFM 105.9 & Newtor & KJRG-FM 92.1 & & WCFM :90.1 & Las Vegas & ORK-FM 97.! \\
\hline Evanston & WEAW 105.1 & Ottawa & & & WHSR-FM 91.9 & Reno & KNEV 95.5 \\
\hline & WNUR : 89.3 & Parsons & KPPS.FM -91.1 & & WTAA 107.3 & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{NEW HAMPSHIRE}} \\
\hline Glen Elly & WYKC.FM 88.1 & Topeka & \begin{tabular}{cc}
KAFM \\
KTOP.FM & \\
\hline 100.9
\end{tabular} & \multicolumn{2}{|r|}{\multirow[t]{2}{*}{MICHIGAN}} & & \\
\hline Harrissur & WEBO.FM 99.9 & \multirow[t]{3}{*}{Wichita} & KFH.FM 100.3 & & & Claremont & WTSV-FM 106.1 \\
\hline Htohtand Pa & WNSH-FM 103.1 & & KMUW 89.1 & Ann Arbor & & Mt. Washindon & WMTW.FM \({ }_{\text {W4. }}\) \\
\hline \multirow[b]{2}{*}{Joliet} & WLOS.FM 100.5 & & KCBm.FM1 107.3 & Bay Clty & WBCM-FM 96.1 & Nashua & WOTW.FM 106.3 \\
\hline & WJOL.FM 96.7 & \multicolumn{2}{|r|}{KENTUCKY} & \multirow[t]{7}{*}{Benton Hrbr. Birmingham Coldwater Dearborn Detrolt} & WHFBFM 99.9 & NEW & JERSEY \\
\hline Kankakee & WKSD 091.9 & Ashland & WCMI.FM 93.7 & & WTYHFFI 94.7 & & \\
\hline Litehfield & SM1.FM 106.1 & Central City & WNES.FM 101.9 & & WKME.FM 98.3 & \({ }_{\text {Atlantic }}{ }^{\text {cidty }}\) & WFPG.FA 96 \\
\hline Macomb & WLRWHKS 991.3 & Glasgow & WFGGC 95.1 & & WDET.FM-101.9 & Bridjeton & WSNJ.FM 107.7 \\
\hline Matioon & WLEHEFM
WRMI-FM
104.9 & Hazard & WKIC.FM 96.5 & & WBFG.FM 98.7 & Camd & WKDN-FM 106.9 \\
\hline \multirow[t]{2}{*}{Mt. Carmel} & WSAB 94.9 & Henderson & WSON.FM 99.5 & & WCHD 105.9 & D. Orer & \\
\hline & WVMC-FM 101.1 & Hopktnsvill & WRLX 98.7 & & WABX \({ }^{\text {99.5 }}\) & Eatontown & WHTG.FM 105.3 \\
\hline & WMIX.FM
WOPA F & Lexindton & WBKY \({ }^{\text {W }}\) & & WDTR 90.9 & Hacketstown & W NTI -91.9 \\
\hline & WVLN.FM 92.9 & & LAP.FM 94.5 & & WGPM 107.5 & Long Branch & WRLE 107.t \\
\hline Paris & WPRS.FM 98.3 & Loulsville & WFPK \(\quad 91.9\) & & WJ WMUZ 103.5 & Newark & WMVEHMI 97.9 \\
\hline & & Madisonrille & WFMW.FM 99.9 & & WMZK 97.9 & & WJRZ.FM 94.7 \\
\hline \multicolumn{2}{|l|}{Park Ridge WMTH -88.5} & madsonvo & WNGO-FM 94.7 & & WJIR.FM 96.3 & & WVNJFM 100.3 \\
\hline \multirow[t]{2}{*}{Quincy} & WGEM FM 105.1 & Owensboro & \begin{tabular}{c}
WOMI.FM \\
WVJS.FM \\
\hline 96.1
\end{tabular} & & Wars.FM 105.1 & New Brunswk. & WCTC.FM \({ }_{\text {W8,3 }}\) \\
\hline & WTAD.FM 99.5 & Paducah & WPAD.FM 96.9 & & WRMK.FM 98.7 & Paterson & WPAT.FM 93.1 \\
\hline & WHEF.FM 98.9 & & WKYB.FM 99.3 & & WWJ-FM 97.1 & Princot & WPRE 103.9 \\
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
Rock island Skokle \\
Springfietd
\end{tabular}} & WRSV 98.3 & \multicolumn{2}{|r|}{\multirow[t]{2}{*}{LOUISIANA}} & E. Lansing & WKAR.FM \(=90.5\) & South Orange & WSOU \({ }_{69.5}\) \\
\hline & WTAX-FM 103.7 & & & & WSWM 99.1 & Trenton & WBUD.FM 101.5 \\
\hline & & dria & KALB.FM 96.9 & Flint & WFBE 95.1 & & A 97.5 \\
\hline \multicolumn{2}{|l|}{184 WHITE'S RADIO LOG} & & KNLB.FM 104.1 & Grand Raplas & WJEF.FM 93.2 & WISrood & WAWZ.FM 99.1 \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Location & C.L. & Mc. & Location & C.L. & Mc. & Location & C.L. & Mc. & Locotion & C.L. & Mc. \\
\hline Pampa & KBMF.FM & 100.3 & Lynchburo & WWOD.FM & 100.1 & & KETO.FM & 101.5 & Eau Clairo & L & . \\
\hline Pasadena & KLVL.FM & 92.5 & Manassas & WPRW.FM & 106.7 & & KGMJ & 95.7 & Fort Alkinson & WFAW & 107.3 \\
\hline plalnviow & KHBL & -88.1 & Marion & WMEV.FM & 93.9 & & JIRO.FM & 100.7 & Green Bay & WBAY.FM & 101.1 \\
\hline Port Arthur & KFMP & 93.3 & Martinsville & WMVA.FM & 96.3 & & KISW & 99.9 & Greenfield Twp. & WWCF & 94.9 \\
\hline San Antonlo & KISS & 99.5 & Newport Nows & WGH.FM & -97.3 & & KLSN & 96.5 & Highland & & 91.3 \\
\hline & KEEZ & 97.3 & Norfolk & WMTI & -91.5 & & KMCS & 98.9 & Highland Twn & WHSA & 89.9 \\
\hline & KAKI-FM & 98.1 & & WNOR-FM & 98.7 & & KOLFM & 94.1 & Janesville & WCLO-FM & 99.9 \\
\hline & KıITY & 92.9 & & WRVC & 102.5 & & K KUOW & 94.9 & La Crosso & WHLA & 90.3 \\
\hline Sinton & KTOD-FM & 101.3 & & WTAR.FM & 95.7 & Spokane & KREM-FM & 92.9 & Madison & HA.FM & -88.7 \\
\hline Texarka & KTALFFM & 98.1 & & WXRI & 104.5 & & KXLY-FM & 99.9 & & WIBA. & 101.5 \\
\hline Tylor & KSLT & 93.1 & & WYFI.FM & 99.7 & & KHQ-FM & 98.1 & & WISM. & 98.1 \\
\hline Waco & KEFC 95 & 5.5(5) & Portsmouth & WAVY-FM & 96.3 & Tacoma & KCPS & 90.9 & & WMFM & 4.1(s) \\
\hline & WACO & 99.9 & Richmond & wCOD & 98.1 & & AY-FM & 106.3 & & WRVB-F & 102.5 \\
\hline Wichita Falls & KNTO & 95.1 & & WFK & 91.1 & & KTNT.FM & 97.3 & Merrill & WLIN & 100.7 \\
\hline & & & & & 94 & & & & & W & 96.5 \\
\hline & H & & Roanoke & BJ.FM & 94.9 & rakim & X.FM & 103.9 & & WISN. & 97.3 \\
\hline Ephralm & & *88.9 & & & 92.3 & & X- & & & W RIT-FM & 102.9 \\
\hline Logan & KUSU-FM & -888.1 & & WROV-FM & 103.7 & WEST & VIRGINIA & & & WMKE & \[
102.1
\] \\
\hline Provo city & KBYU.FM & *88.9 & & WSLS. F M & 99.1 & WEST & VIRGINIA & & & WaFM & 93.3 \\
\hline Salt Lake City & KCPX-FM
KLUB-FM & \[
\begin{aligned}
& 98.7 \\
& 97.1
\end{aligned}
\] & South Boston South Norfolk & WHLF-FM wFos & \[
97.5
\] & Beckley Charlest & wBkw KAZ.FM & \[
99.5
\] & & WTMJ.FM WEKZ.FM & 94.1
93.7 \\
\hline & KSL-FM & 100.3 & Staunton & WSGM-FM & 93.5 & & WKNA & 98.5 & Racino & WRIN.FM & 100.7 \\
\hline & & & Williamstur & WCWM & 89.1 & Huntington & KEE.FM & 100.5 & & WFNY & 92.1 \\
\hline VR & NIA & & nehester & WRFL & 92.5 & & & -88.1 & Rice Lake & MC & 96.3 \\
\hline Arlington & WAVA.FM & 105.1 & ge & WXRA & 105.9 & & EPM -F.FM & 94.3 & Sparta Pol & WCOW & 97.1 \\
\hline & WCCV-FM & 97.5 & WASH & NGTON & & Oak Hill & WOAY-FM & 94.1 & Watortown & WTTN.FM & 97.9 \\
\hline Charlottesvilio & WINA.FM & 95.3 & & ION & & Wheeling & WKWK.FM & 97.3 & Waukesha & WAUX-FM & 108.1 \\
\hline & wsys.FM & 91.3
104.7 & Bellingham & KGMI.FM & 02.9 & Whorms & WWVA.FM & 98.7 & Wausau & WHRM & 91.9 \\
\hline Farmville & WFLO.FM & 95.7 & Cheney & KEWC-FM & -89.9 & & & & auwatosa & M & 103.7 \\
\hline Fredericksburg & WFVA.FM & 101.5 & Edmunds & KGFM & 105.3 & W & SI & & West Bend & WFKVR.FM & 103.5 \\
\hline Gretna & WMNA.FM & 103.3 & Lyndora & & & Apploton & WLFM & -91.1 & & & \\
\hline Hampton \({ }^{\text {Harrisonbura }}\) & WVEC-FM & 101.3 & Opportunity & KZUN.FM & 96.1 & Chilton & WHKW & -89.3 & WY & MING & \\
\hline & WSVA.FM & 100.7 & Seatte & KING.FM & 98.1 & Dolafield & WHAD & *90.7 & Cheyenno & KYOW-FM & 106.3 \\
\hline
\end{tabular}

\section*{U. S. FM Stations by Call Letters}

\section*{Abbreviation: (s)-broadcasts stereo}

\section*{C.L. Location}

AAAR Oxnard, Calif.
KABC.FM Los Anpoles, Callf.
 KADI St. Louls, MO. KAFE Oakland, Call
KAFl Auburn, Callf. KAIM-FM Honolulu. Hawali (s) KAJC.FM Alvin, Tex. KAJS Nowport Beach, Callf. KAKC Tulsa, Okla. KAKI San Antonior Tex.
KALB-FM Alexandrla, La, KALH Denver, Coio.
KALW San Franciseo, Callp. KAMS Mammoth Suring, Ark KANG St. Louis, Mo. KANT-FM Lancaster, Callf. KANU Lawrence, Kans. (s) KANW Albuquerque, N. MeX. KAPP Redondo Beach, Callf. ARK Little Rock, Ark. KARM-FM Fresno, Calif. KARO Houston. Tox. KASK. FM Ontario, Callif. KASU Jonesboro. Ark. KATT Woodland, Calif. KATY-FM San Luis Obispo, Callt KAYD Beaumont. Tex. KAZZ Austin. Tex. KBAY San Franciseo, Callif. (s) KBBI Los Angeies, Calif. KBBL Wichita, Kans. KB8M Hayward, Calli KBBW San Diego, Calif. KBCA Los Angeles, Calif. KBCL.FM Shreveport. La KBCO San Franelsco, Calif. (s) KBEE.FM Modesto, Calif. KBEY Kansas Clty, Mo. KBFI Boise, Idaho KBFM Lubbock. Tex. KBGL Pocatello, Ida.
KBIM-FM Roswell, N. Mox. KBIM-FM Roswell, N. Mrex
KBIQ Los Angeles, Callf. KBIQ Los Angeles,
KBAIF Pampa, Tex. KBMF Pampa, Tex. Callf. KBOA-FM Kennett, Mo. KBOY.FM Mediord, Ore KBOY-FM Mediord, Oreg.
KBTM.FM Jonesboro, Ark. KBTM-FM Jonesboro,
KBUZ-FM Mesa, Ariz. KBYZ-FM Mesa, Ariz. Alaska(s) KBYU.FM Provo, Utah CCAL-FM Redlands, Callp. KCBH Beverly Hills, Callif. (s) KCBS-FM San Francisco, Callt KCFM St. Louls. Mo.(s) KCHO.FM Amarilio, Rex. (s) KCHQ-FM Conchella, Calit. (s) KCIB-FM Fresno, Calif. (5)
KCJC Kansas CIty, Kans. KCJC Kansas City, Kans.
KCLO.FM Leavenworth. Kans. KCMB-FM Wiehita, Kans, KCMB-FM Wichita, Kans,
KCMI Los Angoles, Calif. KCMK Kansas Clty, Mo.
KCMK Kansas City, Mo.
KCMO.FM Kansas City, Mo. (s)
KCMO-FM Kansas City, Mo. (s)
KCMS.FM Manitou Springs, Colo. KCOM Omaha, Nebr,
KCPS Tacoma, Washo CIty, Utah
KCRA.FM Sacramento, Callf.

\section*{C.L.}

KCSH Santa Monica, Galit KCUI Polla la
KCUR.FM Kansas City, Mo. KCVN Stockton, Calif,
KCVR-FM Lod, Calif.
KCWS.FM Ellensburg, Wash. KDB-FM Santa Barbara, Calif. KDDD.FM Dumas, Tox. KDEF.FM Albuquerque, N.Mex. KDEN.FM Denver, Colo KDFC San Francisco, Calif. KDKA.FM Plitsburgh, Pa. KDMC Corpus Christi. Tex. KDMI Des Moines, Iowa(s) KDNT.FM Denton, Tox. KDPS Des Moines, Jowa KDU0 Riversido, Calif. (s) KDVR Sloux City, la. KDWC West Corina. Callf. KEAR San Francisco. Calif KEAX National City, Calif. KEBJ Phoenix. Ariz.
KEBR Sacramento, Calif. KEBS San Diego, Calif. KEED-FM Springfield-Eugeno Oregon(s)
KEEN-FM San Jose, Calls.
KEEZ San Antonio, Tex.(s)
KEFC Waco Tex. (s)
KEFM OKlahoma City, Okla. KEFW Honolulu, Hawail KELE Phoenix, Ariz.
KELT Harlingen, Tox
KEMOSt. Louls Mo,
KEPI Phoenlx, Ariz. (s)
KERN-FM Bakersfield. Callf KETO-FM Seattlo, Wash. (s) KEYM Santa Maria, Calif. KEZE A natheim, Calif. KFAB-FM Omaha. Nobr. KFAC.FM Los Angeles, Callf, KFAM-FM St. Cloud, Minn.
KFBK-FM Sacramento, Calif. KFBK-FM Sacramento, Calif. KFCA Phoenix, Ariz.
KFGQ-FM Boone, lowa K FH.FM Wiehita, Kans. KFIL Santa Ana, Calif. KFJC Mountainview, Calif, KFJZ Fort Worth, Tex. KFMB-FM San Olego, Callif. KFMC Portland, Oreg. KFMH Colorado Springs, Colo. KFMK Houston, Tex. (s) KFML. FM Denver, Colo. KFMM Tueson. Ariz. KFMN Abilene. Tex.
KFMP Port Arthur, Tex. (s) KFMQ Lincoln, Nobr KFMU Los Angeles, Callf. (s) KFMV Minneapolls, Minn KFMX San Diego, Calif. (s) KFMX San Diego, Calif. (
KFMY Eugeno, Oreg. (s) KFMY Eugeno. Oreg.(s)
KFNB Oklanoma City, Okla. (s) KFNB Okiahoma City, KFOX.FM Long Beach, Callf,
KFRC.FM San Francisco, Callf. KF UO. FM Clayton. Ho, KGAF-FM Gainesville, Tex.
KGB.FM San Diego, Calif. (s) KGB-FM San Dlego, Calif. (s)
KGBN-FM Caldwell, Idaho KGFM Edmonds, Wash. KGGK Garden Grove, Callf, (3) KGLA Los Angoles, Cailif.

\section*{C.L.}

Location
KGMG Portland, Orog. (s) KGMI Bellingham, Wash. KGO-FM San Franeiseo, Callf. KGPO Grants Pass, Oreo, KGUD-FM Santa Barbara, Calit. KHAK-FM Cedar RaDids, lowa(s) KHBL Plalnviaw, Tex. KHBR-FM Hillsboro. Tox. KHCB Houston, Tex.
KHFJ Austin, Tex.
KHFM Albuquerque, N.Mex. (s) KHFR-FM Monteray, Calif. (s) KHGM Beaumont, Tex. (s) KHiP San Francisco, Callt. KH1Q, Sacramento, Callf. (s) KHMS EIPaso. Tox.
KHDF Los Angeles, Callf. KHDM-FM Turlock, Calif. (s) KHPC Brownwood, Tex. KHQ.FM Spokane, Wash. KHSC Areata, Callt. KHUL Houston. Tox KHVR BiJou, Calif.
KHYI Fremont, Calif. KICN Omaha, Nebr. KIEM Eureka, Calif。 KIHI Tulsa, Okla. KIMP-FM Mt. Pleasant. ToX. KNG.FM Seattle, Wash. KIOD Oklahoma, Okla. KIRO-FM Seattlo, Wash, KISA Kansas City, Mo. KISS San Antonio, Tex. KISW Seattle, Wash.(s) KITH Phoenix, Ariz. KITT San Diego, Callif. KITY San Antonio, TeX.
KIXL.FM Dallas. \(T\) ex. (s) KIXL.FM Dallas. Tox.(KJAZ Alameda, Calif. Okla KJIM Et. Worth. Iex. KJLM San Diego, Calif. KJML Sacramento Cailf KJPO Fresno, Calif. KJRG Newton, Kans,
KJSB Houston, Tex. KLAC-FM Los Angeles, Callif KLAC-FM Los Angeles, Callf. KLAY-FM Tacoma, Wash.(s) KLEN-FM Killeen. \({ }^{\text {Tex }}\).
KLFM Beverly Hills, Calif. KLIM Beverly Hils, Cal (KLIR-FM Denver, Colo. (s)
KLIZ-FM Brainerd, Minn. KLIZ-FM Brainerd, Minh KLON Long Beach, Calif. KLRO San Ologo, Calli. (s) KLSN Seattle, Wash.(s) KLST Colorado Springs, Colo.(s) KLUB-FM Salt Lake Clty, Utah KLYD-FM Bakersf KLYD-FM Bakersfield, Calif. KLYN-FM Lyndon, Wash. KLZ. FM D Denver, Colo. KMAR Dallas, Tex.
KMAP Dalias, Tex. Calt. KMBC-FM Kansas City, Mo.(s) KMCP Portland, Oreg, KMCS Seattie, Wash, KMFM Tuiarosa, N. Mex KMHT Marshali, Tex.
C.L. Location KMLA Los Angelos, Calif. (s) KMLB.FM Monroo, La.(s) KMMK Littlo Rock. Ark. KMOD-FM Midland, Tex. KMPX San Francisco, Calif. (s) KMUW Wichita, Kans. KMYC-FM Marysville, Callf. KMUZ Santa Barbara, Callif. (s) KNBR-FM San KNDX Yakima, Wash KNEB.FM Scottsblufi, Nebr. KNER Dallas, Tex.
KNEV Reno, Nov.
KNEW.FM Scottsbluff, Nebr. KNFM Midland, Tex. KNIK-FM Anchorape, Alaska KNIX Phoenix. Ariz. (s) KNOB Long Beach, Calif KNDF St, Paul, Minn. KNTO Wichita Falls, Tex. (s) KNX.FM Los Angeles, Callf KOA-FM Denver, Colo. KOCW Tulsa, Okla.(s) KODA.FM Houston, Tex.(s) KOGM.FM Tulsa, Okla K0GO San Diego, Calit. KOIN.FM Porlland Oreg. KOKH Oklahoma City, Okla, KOL-FM Seattle, Wash. (s) KODL.FM Phoenix. Ariz. KORK Las Vogas, Nov.(s) KOSE. FM Oseeola, Ark. KDST Dallas, Tex. KOSU.FM Stlllwater. Okla. (s) KOTN.FM PIne Blun. Ark. KDY-FM Phoenix, Ariz. KOZE•FM Lewiston. Idaho KPAT Albuquerque, N. Mex. KPCS Pasadena. Calli.
KPDQ-FM Portland, Ore. KPEN Atherton, Callf. (s) KPFA Berkoley, Calif. KPFB Berkoley, Calif.
KPFK Los Angeles, Calif KPFM Portland, Oreg. (s) KPGM Los Altos, Calif. KPLR-FM St. Louls, Mo.
KPOI. FM Honolulu, Hawall KPOI.FM Ronoluly, Hawail KPOL-FM Los Angeles, Callf. (s) KPPC-FM Pasadena, Calif KPPS.FM Parsons, Kans. KPRI San Dlego, Calif.(s) KPRN Seatlie, Wash.
KPSD Dallas, Jox.
KQAL.FM Omaha, Nebr. (s) KQBY-FM San Francisco, Callt. KQFP Odessandero Kaip Odessa, Tex.
KQUE Houston Tex
KQV.FM Pittsburgh, P
KQV.FM Pittsburgh, Pa. KRAK.FM Stockton, Calip. KRAM-FM LAS Vapas, NeV. KRAV Tulsa, Okla.(s) KRBE Houston, Tox. (s) KRCC Colorado Springs, Collo.
KRCW
Santa Barbara, Callf. KRE.FM Berkeley, Callf.

KYOW-FM 106.3
C.b. Location KREX. FM Grand Junttion, Colo.
KRFM KRFM Frosno. Calif.
KRHM Los Anseles, Callf. (s)
KRKD-FM Los Angeles, Calif. KRKH-FM Lubbock, Tex.
KRKY Donver, Colo.
KRLD-FM Dallas, Tex.
KRMD.FM Shreveport.
KRMD. FM Shreveport
KRNY-FM Kearney-Holdrege, Nebraska
KRON-FM San Franeisen, Callf.
KROS.FM Clinton, lowa
KROW Santa Barbara, Calif.

KRPM San Jose, Calif.
KRS4 Minneapolis. Minn. (s)
KRSI-FM 8t. Louls Park. Minn.
KRSN-FM Los Alamos, N.Mex.
KRVM Eusene, Orem.
KRVN-FM Loxington. Nobr.
KSCO Santa Cruz, Calif.
KSBW-FM 8alinas, Cal
KSOB-FM Manhetan.
KSDB-FM Manhattan, Kans.
K80S San Dieno, Callp.
KSEO-FM Durant, okla
KSEO-FM Dallas, Tex. (s)
KSFR San Franeisee. Calif. (s)
KSFV San Fermando, Calif.
KSHE Crestwood Mo. (s)
KSHS Colorado Springs Colo.
KSL.FM salt Liko City, Utah(s)
K8LA Seattlo. Wash. (s)
KSLH 8t. Louls. Mo
KSLT Tyler, Tox.
KSMA-FM Santa Marla, Calif.
KSO-FM Des Molnes, lowa
K80M Tueson. Ariz.
KSPI-FM Stllwater, OkI
KSPI-FM 8tilwater, Okia
KSRF Santa Monica, Callf.
KSTL FM St Louls.
KSTN.FM Stockton, calif
KSUI lowa City, lowa
KSWI-FM Omaha. Nebr.
KSYN Joplin, Mo. (s)
KTAL Texarkana. Tex.
KTAP Texeson, Ariz.
KTAR-FM Phoenlx, Arlz.
KTBC-FM Austin, Tex. (s)
KTCF Codar Falls, lowa
KTEC Oreteeh, Oreg.
KTGM D anyer, Cole
KTIM San Rafaol. Calit.
KTIS.FM Minneapolis. Minn.
KTJO-FM Ottawa, Kans.
KTOD Mt. Ploasant. Tex. (s)
KTOP-FM Topeka, Kans.
KTOY Tacoma, Wash.
KTPM Sun City, Ariz. (s)
KTRH-FW Houston. Tex.
KT8M-FM EI Paso, Tex.
KTSR Kansas City. Mo.
KTTS-FM Springtield, wo
KTWR Tacoma, Wash.
KTXR-FM Sprtnefield, Mo.(s)
KTXT-FM Lubbock. Tex.
KTYM-FM Inelewood, Callif
KUDE.FM
KUDU.FM
Ventura-Oxnard. Calif. (s)
KUER Salt Lake CIty, Utah
KUFM EI Cajon. Calif.
KUGN-FM Eugene, Oreg.
KUHF Houston. Tex.
KUMD-FM Duluth. Minn. KUOA.FM 8iloam Sprines. Ark. KUOH Homolulu. Hawall
KUOW Seattle, Wash.
KUPD-FM Tompe, Arlz.
KUSC Los Anseles, Callif.
KUSN-FM St. Joseph. Mo.
KUT-FM Austin. Tex.
KUTE Giondale. Cailf. Calif.
KVEC-FM
San Luis Obispo. Callf. (s)
KVEN-FM Ventura, Calif
KVFM San Hernando, Calif.
KVIL HIHIand Pk.. Tox.
K
KVIL HIghland Pk., Tex. (s)
KVOF-FM EI Pato. Tex.
KYOP.FM Plainviow, Tex
KVOR-FM Colorado Springs, Colo.
KVSC Lonan, Utah
KWAR Waverly, lowa
KWFM Minneapolis. Minn. (s)
KWFG-FM Stockton, Callif.
KWGS Tulsa, 0kla.
KWIZ.FM Santa Ana, Calli.
KWJB-FM Globe, Ariz.
KWKH-FM Shreveport, Le
KWME Walnut Creek, Calif. (s)
KWMO Odessa, Tax
KWOA.FM Worthingten, Minn.

\section*{C.b.}

KWOC.FM Poplar BIUTH. Mo.
KWPC.FM Muscatine, low
KWPM-FM West Plains, Mo,
KXFM Fort Wortho Tox.
KXJK.FM Forrest City, Ark. KXLU Los Angeles, Calif. KXOA Sacramento, Calif.
KXOR
KXRQ
Sasme, Calif. (s)
KXTR Kansas Cily, Mo.(s) KXYZ.FM Hauston, Tex. (s) KYA-FM San Franclseo, Callf. KYEW Phoenix. Ariz. KYFM Oklahoma City, Okla.
KYSM-FM Mankato, minn. KYW.FM Cleveland, ohio KZAM Seattie. Wash. (s) KZFM Cortez, Colo.
KZOM Oklahoma City, okla. KZUN-FM Opportunity. Wash WAAB-FM Worcester, Mass. WAAM-FM Parkersburg, W.Va WABC.FM Now Yor
WABI-FM Bangor, Maine WABQ Cleveland, Ohlo WABZ.FM Albemarle. N.C. WABZ-FM Albeme
WAEB-FM CIneinnatI. Ohio WAEF Syracuse, N.Y.
WAEZ Miami Beach, Fla. (s) WAEZ Miami Beach, Fla. (s)
WAHR.Fm Miami Beach. Fla. WAHR.Fm Miaml Beach, Fla. WAIC San JUan. P.R. WAIR-FM Winston-Salem, N.C. WAJC Indianapopolis, ind. WAJC Indianapolis, Ind. WAJP jolitg. III.
WAJR.FM Morgantown, W,Ve WAKR-FM Akron, Ohio WAK W-FM Cincinnati. Ohio WALK.FM Patchogue. N.Y. WAMC Albany. N.Y.
WAMF Amherst, Mas، WAMU-FM Washington. D.C. WAPC.FM Riverhead. N.Y.(8) WAPI.FM Birmingham. Ala. WAPS Akron. Ohio
WAQE. FM Towson, Md. (8) WARD-FM Johnstown. Pa WARK.FM Haperstown. Md. WARL-FM Arlington, Va. WARN-FM Fort Plerce, Fla. WASH Washington, D.C.(s) WATR WM Waterbury, Conn WAUG.FM Augusta, Ga. WAUX.FM Waukesha, Wis. WAVI-FM Dayton. Ohio
WAVQ Atianta. Ga.
WAVU-FM Albertville, Als. WAVY-FM Portsmouth, Va. WAWZ-FM Zarephath, N.J. WAYZ.FM Waynesboro, Pa. WAZL-FM Hazelton, Pa. WBAA-FM W. Lafayetto, Ind. WBAB-Fm Babylon. N.Y. WBAI New York. N.Y. WBAP.FM Ft. Worth, Tex. (s) WBAY-FM Green Bay, Wis. WBBB-FM Burlington,
WBBF-FM Rochester, N.Y.
WBBM-FM Chicago Ill.
WBBO-FM Forost City, N.C. WBBQ-FM Aususta, Ga. WBBR-FM E. St. Louis. III. WBBS Crawfordsvilio. Ind. WBBW-FM Yountsstown, ohlo WBCB-FM Lovittown-Fairless, \({ }_{\text {Hills, }}\)
WBCI.FM WIlliamsburg, Va. WBCM-FM Bay City, Mich WBCN Boston. Mass. (s) WBEN-FM Butfale, N.Y. WBEU.FM Beaufort. S.C. (s) WBEX-FM Chilicothe, Ohlo WBEZ Chisago. III.
WBFG Now York. N.Y.
WBFO BuTfalo. N.Y. WBGM Tallahasseo, Fla. WBGU Bowling Greon, Ohio WBIE-FM Mariotta. Ga. WBIY wethersteld is \(Y\). WBJC Beltimere.
WBKV-FM West Bend, Wis.(s) WBKW Beekioy, W.Va.
WBLY-FM Spriagheld, ohio WBMI Meridan. Conn. (s) WBNS-FM Columbus, Ohlo (s) WBOE Cleveland, Ohio WBOR Brunswick, Maine WBOS.FM Brookino. Mass. WBRB.FM Mt. Clements, Mieh. WBRC Birmingham. Ala.
WBRE.FM Wlikes-Barre, Pa WBRE-FM Whes-Barre, Ma, WBSM-FM New Bed
WBST Muncie, Ind.
C.L. Locaplon WBT-FM Charlotte, N.C. (s) WBUD.FM Tronton. N.J. (s) WBUF Bumato, N.Y. WBUR Boston, Mass. WBUT-FM Butler. Pa, WBVA Weodbridso, Va. WBVP-FM Beaver Falls, Pa WBWC Berra, Ohio WBZ.FM Boston, Mass. WCAC Anderson. S.C. WCAO-FM Baltimore. Md. WCAU-FM Phlitdolphia, Pa,
WCBC.FM Anderson. Ind. WCBC-FM Anderson. Ind. WCBE Columbus Ohio WCBS. FM Naw mors, Md. WCBS.FM New York, N.Y. WCCV.FM Charlottesville, Va. WCED-FM Dubois, Pa, WCEN-FM Mt. Pleasant, Micm. (s) WCFM Wiliamstown. Mass. WCHA.FM Chambersburg, Pa.(s) WCKR.FM Misml Fis
wCLE.FM Cleveland, Tenn. WCLI.FM Corning. N. Y. WCLM Chicato. II.
WCLO.FM Janesvilie, Wis. WCLW.FM Mensfild Ohio WCMC-FM wildwed M, WCME.FM Brunswick. Maine WCMFFFM Rochester, N.Y. (s) WCM1-FM Ashland. Ky. WCMO Marietta, Ohio WCNB.FM Connersvilite, Ind. WCNB Canton, Ohio(s) WCOD Rishmond, \(V\) a.
WCOH.FM Nownan. Ga WCOL.FM Columbus. Ohio WCOP.FM Boston, Wass. wCOU.FM Lewiston. Main WCOW-FM Sparta, wis. wCPO-FM CinelanatI, Ohio WCPS-FM Tarbor. N.C. WCRB.FM Waltham. Mass. (s) WCRF-FM Cloveland, Ohio WCRT-FM Birmingham. Ala. (s) WC8C-FM Charieston. s.C (s) WCSQ Central Square. N.Y. WCTA.FM Andaluaia. Ala. WCTC.FM New Brunswiek, N.J. WCTM Eaton, Ohio
WCTW-FM New Castle, Ind. WCUE.FM Akron, Ohio WCUM-FM Cumberland. Md, WCWM WIlliamsburg, Va, WDAC Lancaster. Pa. WDAF-FM Kansas Clty, Mo. WDBJ-FM Roanoke, Va WDBN Akran. Ohio (s) WDBO-FM Orlande. Fla.
WOBQ.FM Dubuque, low WDCX Bunialo, N.Y.(s) WDDE Hamden. Conn. WODS.FM Syracuse. N.Y. WDEL-FM Wlimington. Dal. WDET- FM Dotralt, Mich. WDFM State Collogo, Pa.
WDGO Cleveland, Ohio(i) WDGO Cleveland, Ohio(s)
WDHA-FM Dover, N.J.(s) WDHA-FM Dover \({ }^{\text {N }}\)
WDHF Chieago, WDIA-FM Memphis, Tenn. WDJK Atlanta, Ga.
WDJR oll Clty. Pa.
WDJR oll Clty Pa.
WDMB-FM Statesville, N.C. WONC-FM Durham. N.C. WDOC-FM Prestonsbure. Ky. WDOD-FM Chattanooila, Tenn. WOOK-FM Clevaland Ohlo WDOV-FM Dover, Dol. WORC-FM Hartford, Conm. WDRK-FM Greanvilie, Ohio WDSU.FM Now Orleans WDSU-FM Now Orleans, La WDTM Datroil. Mich.(s) WDUB Datroit, Mien. WDUN.FM Gainesville, Ga.(s) WDUQ Pittsburgh. Pa. WDUZ-FM Green Bay, wis. WEAV.FM Plattsburgh. N.Y. WEAW.FM Evanston. III. WEAW CM Evansil. WEBQ.FM Harrisburs, III. WEBR-FM BuTalo, N.'Y. WEEW Elmira. N.Y. WEDK Springfeld, Mass. WEEO-FM Roely Mount, N.C. WEEI-FM Boston, Mass. WEEP-FM Plitsburih. Pa. WEEX.FM Easton, Pa, WEFM Chicage. ill.(s) WEGO-FM Concord, N.C. WEHS Chleage. III. WEIV Ithaca, N.Y. WEKZ-FM Monroe, Wis. WELF GIon Ellyn, III.

\section*{C.L. Location}
w ELG Elgin. III.
WEMC Harrisonburg, Va.
WEMP.FM Milwaukee, W
WENR-FM Chitago, II
WEOK-FM Poughkeapsis. N.Y
WEOL-FM Elyris, Ohio
WEPM-FM martinsburt. W.Va
WEPS Elgin. Ill.
WEQR Goldsboro, N.C.
WERE.FM Cleveland. Ohio
WERI.FM Westerly, R.I.
WERS Boston. Mas,
WERT-FM Van Wert, Ohio
WESC-FM Greenville, S.C.
WETL South Bend, Ind
WEVC Evansvilie. Ind
WEVD. FM New York, N.Y.
WEWO-FM Laurinburg. N.C.
WFAA-FM Dallas, TAx.
WFAN Washington, DC.
WFAS-FM White Plains, N. Y.
WFAU.FM Augusta, Maine
WFAW Fort Athinson. Wis
WFRC.FM Greanville 8.C.
WFBE Fllint. Mieh.
WFBG-FM Altoona, Pa. WFBE.FM Indianapolis, Ind, WFCI Franklin, Ind.
WFCJ Miamisburg, Ohle
WFFS. Am Balitmore, Md. WFFM CineInnati. Ohio WFGM.FM Fitenburs, Mass WFHA-FM Rod Bank, N.J,
WFHR.FM Wisconsin Rapids, wis. WFID Rio Plodras, P.R. (s) WFIG Sumter, 8.C. WFIL.FM Philadolphia, Pa WFIU Bloomington. Ind.
WFKO Kokome. Ind.
WFLA-FM Tampa, Fla.
WFLM Ft. Lauderdale. Fla, (s)
WFLN-FM Philadolphia. Pa.(8) WFLO Farmville, Va. WFLT-FM Franklin. Tenn. WFLY Tray, N,Y,
WFMA Rocky Mount, N.C.
WFMB Nashyille. Tenn.
WFME Detroit. Mich.
WFHF Chicaed. III.
WFMG Gallatin. Tann
WFMH. FM Cultman. Als.
WFML Montgomery. Als. WFMM-FM Baltimore, ind.
WFMO Chieago, III. (s) WFMS Indianapolis, Ind. WFMU East Orange. N.J. W FMX Statesville. N.C. WFMZ Allentown, Paile, N.C. WFN8.FM Burlington, N.C. WFNY Racinc. Wis. WFOB-FM Fot foria, Ohio WFOL Hamilton. Ohio (s) WFOS South Norolk, Va. WFPGK Loulsville, Ky. WFPL Loulsvillo, KY, WFRO-FM Fremont. Ohio WFST-FM Caribou, Maine
WFSU-FM Tallahassee, Fla. WFUL-FM Futon, Rapids, Mith WFUV New WFVA-FM Frederleksburs, Va WGAR-FM Cloveland, Ohio WGAU-FM Athens, Ga. (s) WGAH-FM Cambridge. Mats. (s) WGBI-FM Seranton. Pa. WGBI-FM Seranton. Pa.
WGBSEM Maml. WGCB.FM Red Lion, Pa WGCS Goshen, Ind.
WGEM-FM Qulney, III. (s) WGFM Schenettady, N.Y. (s) WGGC Glastow. Ky. WGGM Taylowille. III.
C.L. Locaflon

WGRV.FM Greeneville, Tenn. WGTB-FM Washington, D.C. WGTS. FM Takoma Park, Md. WGUC Cincinnat1, Ohio WGVE Gary, Ind.
WGWR-FM Asheboro, N.C. WGYA Interiochen, Mich. WHA-FM Madison, W WHAD.Oelafeld, WIS, WHAT FMi Philadelphla, Pa. (s) WHAV-FM Haverh, Mass WHBC.FM Canton, Ohio WHBF.FM Rock Island, III,(s) WHBI Newark, N.J. WHCI Hartiord Clity, Ind. WHCN Hartford, Conn
WHCH.FM Inaca, N. WHDL-FM Allegheny, N. \(Y\), WHFB.FM Benton Harbor, Mich. WHFI West Paterson, N. WHFS Bethesda. Md. (s) WHHI Highland, Wis. WHHS Havertown, Pa. WHIL.FM Medford, Mass. WHIM.FM Providence. R.I WHIO-FM Dayton. Onio WHK-FM Cleveland. Ohio WHKW Chitendersonville, N.C. WHKY CMIon, Wis.
WHKA-FM Hickory, N.C.
WHLD.FM Niagara Falls. N. Y. WHLI-FM Homustead, N.Y. WHMA.FM Anniston. Ala. WHNC FM Henderson N. WHO.FM Des Molnes, Jowa WHOH Hamliton, Ohlo
WHOK.FM Lancastor, Ohio WHOO.FM Orlando, Fla. (s) WHOS.FM Decatur, Ala. WHP.FM Harrisburg, Pa. WHPE. FM High Point, N.C. WHPS High Point, N.C. WHRB-FM Cambridge, Mass, WHRM Wausau. WIS
WHSA Highland Twp., Wis. WHSR-FM Winchester, Mass. WHTG-FM Eatontown, N.J. WHUS Storrs, Conn.
WHWC Coltax, Wis.
WHYL.FM Carlisle, Pa. WHYN.FM Springfeld. Mass. WHYY Philadelphia. Pa. WIAL Eau Clalro. Wis.
WIAM-FM WIlliamston. N.C WIAN Indlanapolis. Ind. WIBA-FM Madison, Wls. WIBC-FM Indianapolis, Ind. WIBG.FM Philadelphla, Pa. WICB Ithaca, N,Y. WICR Indianapolis.Ind. WIFE Buffalo, N.Y.
WIFM-FM EIkin, N.C. WIFM-FM Eikin, N.C. Ind. WIL.FM St. Louls, Mo WILO-FM Frankfort, ind WILO-FM Frankfort, In WINA-FM Charloitesville, Va. WINE.FM Kenmore. N.Y WINF.FM Manchestor. Conn. WIP,FM Miami, Fla. WIP. FM Philadelphla, Pa. WIRA.FM Ft. Pierce. Fla. WIRQ Rochoster. N.Y WISH-FM Indianapolis, Ind.(s) WISM FM Mad Mass
WISN. FM Milsan, Wis. (s) WIST.FM Charlotte is WITA-FM Narlotto. N.C WITH.FM Baltimore. Md. WITZ.FM Jasper, Ind WIUS Christlansted, V.I. WJAC-FM Johnstown. Pa. (s) W.JAS-FM Pittsburgh. Pa. WJAX.FM Jacksonvilie. Fla. WJBC-FM Bloomington, II WJBL-FM Holland, Mich WJBO.FM Baton Rouge, WJBR Wilmington, Dol (s) WJCD.FM Seymour, Ind. WJDX.FM Jackson. Milss. WJEF.FM Grand Rpds., Mich. (s) WJEH.FM Gallipolis, Ohio WJEJ.FM Hagerstown, WJHL.FM Johnson City, Tonn. wJIG.FM Tullahoma, Tonn.(s) WJM.FM Lansing, Mich. W JIV Cherry Valley, N.Y. WJLK.FM Asbury'Park WJLN BIrmingham, Ala.
.
w M Mir Rice Lake. Wis WJMD Bethesda. Md.(s) WJOF Athens, Ala
WJOL.FM Joliet, ill. (s) WJR.FM Detroit, MIch. WJRZ Newark, N.J. WJTN-FM Jamestown, N.K. WJW.FM Cleveland, Ohio W JWR Palmyra, Pa. WJZZ Bridgoport, Conn. WKAK Kankakee, llf. WKAQ-FA San Juan, P.R. WKAR-FM E. Lansing, Mith. WKAT-FM Miaml, Fla: WKAY-FM Glas gow. Ky. WKAZ.FM Charleston, W.Va.
WKBC.FM N. Wilkesboro, N.C. WKBC-FM N. Wilkesboro, N.C.
WKBN.FM Youngstown, Ohio WKBN-FM Youngstown, Ohio WKBR-FM Manchester. N.
WKBY-FM RIchmond, Ind. WKCQ Berlin. N.H.
WKCR-FM New York. N,Y. WKCS Knoxville, Tenn. WKDN-FM Camden. N.J. WKEE,FM Huntington, W. Va. WKET.FM Kettering, Ohlo(s) WKFM Chicago, III. (s) WKIC.FM Hazard. Ky. WKIP.FM Poughkeepsie, N.Y, WKIS-FM Orlando, Fla. WKIX.FM Ralelgh, N.C.
WKJF Pittsburgh, Pa.(s) WKLF-FM Clanton. Ala. WKLS Marietta. Ga. (s) WKLW-FM Grand Raplds, Mich. WKMH-FM Dearborn, Mich.
WKNA Charleston. W. Va. (s) WKNA Charleston. W. Va WKOF HopkInsville, Ky. WKOP-FM Binghamton, N.Y. WKOX-FM Framingham, Mass WKPT.FM KIngsport, Tonn.(s) WKRC-FM CInctnnatl. Ohlo WKRT.FM Cortland, N.Y. WKSD Kewanee, III, WKTM N Charleston. WKTM. FM Charleston, S.C. WKKK.FM Whyeell \({ }^{\text {K }}\) W. (s) WKWK-FM Wheellng. W.Va. WKAB.FM Padueah, Ky. WLAG.FM Danbury. Conn WLAN.FM La WLAN-FM Lancaster, Pa. WLAV-FM Grand Rapids, Mich. WLBG. FM Laurens-Ciintón, S.C. WLBH.FM Mattoon, III. WLDM Oak Park, Mich. (s) WLDS.FM Jacksonville, III. WLEC-FM Sandusky, Ohlo. WLET-FM Toceoa, Ga. WLFM Apploton. Wis. WLIN Merrlit, WIs. WLIR Hicksville, N.Y.(s) WLLH.FM Lowell mass. WLNA-FM Pcekskill, N,Y. WLOA FM Braddock, Pa. (s) WLOB-FM Portland, Malno WLOE-FM Leaksvile. N.C. WLOM Chattanooga, Tenn. WLOS.FM Asheville, N.C. WLOV Cranston, R.I.
WLVL Louisvilie. Ky. WLYC.FM Williamsport, Pa, WMAL.FM Washington. D.C WMAM-FM Marinette, Wis. WAAQ. FM Chicago, il. (s)
WMAS.FM
Springfield, Mass WMAX.FM Grand Raplds. Mich. WMAZ-FM Macon, Ga. WMBD.FM Peoria, III WMBI-FM Chicago. III.
WMBM Mlaml Beach, Fla WMBO-FM Auburn, N.Y. WMER.FM Jacksonville, Fla WMCF Memnhis, Tenn WMCO New Concord, Ohio WMCR Kalamazoo, Mich. WMEB-FM Orono, Malne WMER COIIna. Ohi WMEV-FM Marlon. Va. WMFM Madison. Wls.(s) WMFR-FM High Hoint, N.C. WMGW.FM Meadville, Pa. WMHC South Hadley, Mass. WMHE Toledo Ohio
WMIL-FM Milwaukee, Wis. WMIV S. Bristol. N.Y
WMIX.FM Mt. Verion, 11 WMLS. FA Sylacauga, Ala. WM LW Milwaukee, Wis. WMPS.FM Memphis, Tenn. WMRI.FM Marion, Ind. WMRN-FM Marlon, Ohio WMRO.FM Aurora, III. WMRT Lansing, Mich. WMSP Harrisburg, Pa. WMSR-FM Manchester. Tent.
C.L. WMTV Norfolk, Va. WMTW.FM

Mt. Washington, N.H.(s) WMUA Amherst, Mass. WMUB Oxford, Ohio WMUL Huntington, W.Va. WMUN Muncie, Ind. WMUU.FM Greenvilie, s.C. WMUZ Detroit, Mich. WMVA.FM Martinsville, Va.(s) WMVB-FM Millville, N.J. WMVO-FM Mount Vernon, Ohio WMZK Detroit, Mleh. WNAD-FM Norman, Okla. WNAS New Albany. Ind. WNAV.FM Annapolls, M d WNBC-FM
WN N W York. N.Y.
Waytona Beach, Fla. WNBF.FM Binghamton. N. Y. WNBH-FM New Bedford, Mass. W NCN Now York. N.Y. WNGO.FM Ashland, Ohlo WNDA Huntsville, Ala. (s)
WNDU.FM South Bend, Ind. WNDU.FM South Bend, Ind. WNEM-FM Bay Clity. Mlch. (s) WNES-FM Central City. KY. WNEW.FM New York,
WNEX.FM1 Macon. Ga. WNEX-FM1 Maconilga.
WNFO.FM Nashville, Tenn.(s) WNGO-FM Mayfield, Ky. WNIB Chleapo, III.
WNAC Dokalb, III,
WNNJ.FM Nowton, N.S.
WNOB Cleveland, Ohlo (s)
WNOB Cleveland, Ohlo(s)
WNOK-FM HIgh Polnt, \(N . C\). WNOK-FM HOph FOR.FM, N.C. WNOS-FM High Polnt, N.C. WNOW-FM York, Pa. WNSH Highland Park. III WNSL- FM Laurel, Miss WNTI Hackettstown, WNUR Evanston. III.
WNWC.FM Arlington Hts., III. WNYC-FM Armort His., II WNYC. FM Now York N.Y WOAK Royal Oak Nich WOAY-FM Dak Hill. Wi.Va WOBN Westervillo, Ohio WOCB-FM W. Yarmouth, Mass. WOCB-FM Shelby N. WOI.FM A mes wolo Cineinnatl, Ohio WOIV De Ruyter, N.Y. WOKZ.FM Alton, III. WOMC Royal Oak. Mich.(s) WOM1.FM Owensboro. Ky. WOMP.FM Bollaire, ohio WONO Syracuse, N.Y. WOOO.FM

Grand Raplds. Mich. (s)
WOPA-FM Oak Park. Ill.
WOPI-FM Bristol, Tenn.
WORA-FM Mayaguéz, P.R. WORX.FM Madison, Ind. WOSC.FM Fulton. N,Y. WOSJ.FM Atlantic City. N.J. WOSU:FM Columbus, Ohio WOTW-FM Nashua, N. H. WOUB.FM Athens, Ohio
WOW.FM Omaha, Nebr WOXR Oxford, Ohio WPAC.FAM Patehogut. N.Y.(s) WPAD.FM Paducah, KY.
WPAT. FM Paterson. N.J. WPAY-FM Porlsmouth, Onio (s) WPBC.FM Minneapolis, MInn. WPBS Philadelphia. Pa. WPCA-FM PhiladeIphia, Pa. WPEL.FM Montrose, Pa WPEN.FM Philadelphia. Pa. WPEX-FM Pensacola, Fla. (s) WPFB-FM Middletown, Ohio (s) WPFM Provldence, R.I. (s) WPFR Terro Haute, Ind.
WPGO.FM Bradbury His., Md. WPGI Plitsburgh, Pa. WPIC.FM Sharon, Pa. WPIT-FM Pittsburgh, Pa.
WPJB.FM Providence, R.I. WPKM Tampa, Fla. WPLB Greenvilic. Mlen WPLM-FM Plymouth, Mass, WPLO-FM Atlanta. Ga. WPRB Princeton, N.J. WPRK Winter Park, Ft WPRM San Juan, P.R. WPRO.FM Providenc WPRW-FM Manassas, WPSR Evansvllio, Ind. WPTF. FM Ralolgh, N.C WPTH Fort Wayne. Ind. WPWT Philadelphia, Pa. WQAL Philadolphia, Pa.(s) WQDC. FM Midland, Mich. (s) WQFM Milwaukee. Wis. WQMF Babylon, N.Y. (s) WQMG Greensboro, N.C.(s) WQMS Hamilton, Ohio WQRS.FM Detrolt, MICh. WQRS-FM Detroit, Mich
WQXI-FM Atlanta, Ga.
C.L.

\section*{Location}

WQXR.FM New York, N.Y.(s)
WQXT-FM Palm Beach, Fla. WRAJ-FM Anna, III.
WRAK-FM Wlllamsport, Pa. WRAL-FM Raleigh, N.C. WRAY-FM Printeton, Ind, WRBL-FM Columbus, Ga, WRBS Baltimore. Md. WRC.FM Washington, D.C. WRCM New Orleans. La.
WRED Youngstown.Ohlo WREO.FM Ashtabula. Ohlo WREV.FM Reldsville, N.C. WRFD.FM Worthington. Columbus, Ohio
WRFK Richmond, Va.
WRFL WInehester, Va.
WRFL WInchester,
WRFM
W
WRFS.FM Alexander City, Ala.
WRFY-FM Reading, Pa.
WRHS Park Forest, Ili.
WRIT.FM Milwaukee. Wis.
WRJN-FM Racine, WIS.
WRJR Lewiston. Maine
WRKO.FM Boston. Mass,
WRKT-FM Cocoa Beach, Fla.(s)
WRLB Long Branch, N.J.(s)
WRLX Hopkinsvilie. Ky.
WRLD-FM Lanett, Ala.
WRMI-FM Morris, III.
WRNJAtlantic City, N.S
WRNL.FM Riehmond. Va WRNW Mount Kisco, N.Y.
WROC.FM Rochester, N.Y WROK-FM Rockford, III. WROY.FM A.Lany, N.Y WRPI Troy. N, Y.
WRPN.FM. RIDO
WRPN-FM Ripon. Wls
WRR-F M Dallas, Tex
WRRN Warren, \({ }^{2}\) a.
WRSV Skokio, lll.
WRSW-FM Warsaw, ind,
WRTI.FM Philadelohia, P. WRUF.FM Galnesville, Fla.
WRUN-FM Utica. N.Y.
WRVA-FM Richmond, WIa,
WRVC Norfolk. Va.
WRVP New York, N.Y
WRWR Port Clinton, Ohio(s)
WRXO.FM Roxboro, N.C.
WRYT Pittsburgh, Pa.
WSAB Mt. Carmel, lil.
WSAAM.FM Saginaw. Mleh.
WSB-FM Atlanta. Ga.(s)
WSBA.FM York, Pa.
WSBC.FM Chleago, III, (s)
wSCB Springfield, Mass.
WSCH Harfford, Conn.
WSEV-FM Sevierville. Tenn.
WSFM BIrmingham, Ala. (s)
WSHS Floral Park, N.Y.
WSID Baltimore, Mo.
WSIU Carbondale. III
WSIX.FM Nashvilie. Tenn. (s)
WSJG Hallandate, Fla
WSJS.FM WInston.S
WSKS Wabash, Ind.
WSLN Delaware, Ohio
WSLS. FM Roanoke. Va. (s)
WSMC.FM Collogedale, Tenn.
WSM1.FM Litchneld, III.
WSMJ Groenfield, Ind.
WSNJ-FM Bridgeton. N.J.
WSNW.FM Seneca, S.C.
WSOM Salem, Ohlo
WSON.FM Henderson, Ky.
WSOU S. Orange, N.J.
WSPA-FM Spartanburg. S.C.(s)
WSPO-FM Totedo, Ohio
WSPE Springville. N.Y. \(W\) is.
WSRW.FM Hillsboro, Ohlo
WSTC-FM Stamford, Conn.
WSTP. FM Salisbury, N.C.
WSTR.FM Sturgis, Milch.
\begin{tabular}{|c|c|c|}
\hline C.L. Lecotion & C.L. Locotion & C.L. Locotion \\
\hline TOA Tranton, N & WUPY Lynn. Mass. (s) & VST St. Petershure, \\
\hline TOC.FM Savannah, Ga, & WUSC-FM Columbia, S.C. & WVTS Terre Haute ind. (s) \\
\hline WTOD-FM Toledo. Ohlo & WUSV Seranton, Pa, & WWCF Graeninid, wis. \\
\hline WTOF Canton. Ohio & WVAM-FM Altoona, Pa, & \\
\hline WTOP-FM Washington. & VBR.FM ithaea, N. Y. & WWGP.FW Eanford. \\
\hline T0s Wauwatosa, Wi & WVCG.FM Coral Gables, Fla. (s) & WWHG-FM Hornell, \\
\hline TRC.FM Elkhart & WVEC-FM Hampton, Va. & WWHI Munele, Ind. \\
\hline TSE-FM Lumberton, N.C. & WVGR-FM Grand Raplds. Wich. & WWIL-FM Ft, Lauderdale, Fis, \\
\hline WTSV-FM Claromont, N.H. & & \\
\hline WTTC.FM Towanda, Pa. & WVKC.FM Galesturi, Ifi. & WW \% \({ }^{\text {M }}\) T New Orleans. La (s) \\
\hline TTV-FM Bloomington. Ind. & WVKO-FM Columbus, ohio & WWOD-FM Lynehhurg \\
\hline TUN Tampa, Fia. & WVLK-FM Lexington, Ky. (s) & WWOL-FM Buffalo. N.Y \\
\hline B.FM Coldwater, Mieh. & WVLN-FM Olney, 11. & WWON-FM Woonsocket, R.I. \\
\hline TVN-FM Columbus. Ohlo & C-FM Mt, Carmel, Ill. & PB Miaml. Fla. (s) \\
\hline UCB-FM Chicago, ill. UFM Utiea. N.Y.(s) & WVNA-FM Tuscumbia, Ala. & WST.FM Wooster, Ohio \\
\hline LX-FM Richmond, Ind. & WVNJ-FM Newark, N.J. & SW-FM Pittsburgh \\
\hline C Chapel Hill, N.C. & WVNO-FM Manstield. Ohio(s) & WTV-FM Cadllas, M \\
\hline WUOA Tuscaloosa. Als & WVOT-FM Wilson, N.C. & WVA-FM Wheeling, W. \\
\hline WUOM Ann Arber, Mlich. WUOT Knoxville, Tenn. & WVOX-FM Naw Rachalie, N.Y.
WV8H Huntington, Ind. & WWWS Grsenvilie, N.C. \\
\hline
\end{tabular}

WXBR Cocon Beach. Fla. WXCN Providence. R.I. (s) WXHR CImwood Park. III. WXPN Philladelphia, Pa, WXRI Norfolk. Va. WXTO.FM Grand Rapids, Mich. WXYR-FM Medis. PE WYAK Barasota, Fla. (s) WYBC-Fm Now Haven, Conn, WYCE Warwick, . WYCR York-Hanover, \(\mathrm{Pa}_{2}\) WYFI Norfolk, Va.(s) WYFS Winston-Salem, N.C. W yso Yellow Springs. Ohi WYZZ Wlikes-Barre. Pa. WZIP-FM Cineinneti, Ohio

Canadian FM Stations by Location
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Location & c.l. & Mc. & Locatlon & C.L. & Mc. & Location & C.L. & Mc. & flon & C.L. & Mc. \\
\hline Brampton, Ont. & CHIC-FM & 102.1 & KIngsten, Ont. & CFRC.FM & 81.8 & Oshams, Ont. & CKLB-FM & 93.5 & Toronto, Ont & CBC.FM & . 1 \\
\hline Brantford, Ont. & CKPC-FM & 92.1 & & CKLC.FM & 99.5 & Ottawa. Ont. & CBO-FM & 103.3 & & CFRB.FM & 99.9 \\
\hline Cornwall, Ont. & CJSS.FM & 104.5 & & CKWS-FM & 06.3 & & CFMD.FM & 93.8 & & CHFI-Fm & 98.1 \\
\hline Edmonton. Alta. & CFRN-FM & 100.3 & Kitchener, Ont. & CKCR-FM & 98.7 & Quabee, Qus. & CHRC.FM & 98.1 & & CJRT-FM & 81.1 \\
\hline & CJCA-FM & 89.5 & Lethbridfe. Aita. & CHEC.FM & 100.9 & Rimouskl. Que. & CJBR.FM & 101.5 & Vancouver, B.C. & CBU.FM & 105.7 \\
\hline & CKUA-FM & 98.1 & Lendon, Ont. & CFPL.FM & 95.9 & St. Catharines. & & & & CHOM-FM & \\
\hline Ft. Wlillam, & & & Montreal, Que. & CBF.FM & 95.1 & Ont. & CKTB-FM & 87.7 & \begin{tabular}{l}
Verdun. Que. \\
Vieterla, B.C
\end{tabular} & CKVL-FM & 96.8
98.5 \\
\hline Ont. & CKPR-FM & 94.3 & & CBM-FM & 100.7 & Sherbrooke, Que. & CHLT-FM & 102.7 & Windsor. Ont. & CKLW.FM & 93.9 \\
\hline Hallfax, N. 8. & CHNS-FM & 96.1 & & CFCF-FM & 106, 5 & TImmins, Ont. & CKGB.FM & 94.5 & Winnipeg, Mam. & CJOB.FM & 97.5 \\
\hline
\end{tabular}

\section*{Canadian FM Stations by Call Letters}
C.L. Location

CBC.FM Toronto. Ont. CBF-FM montreal, Que. CBM-FM Montreal, Que. CBO-FM Ottawa. Ont. CBU.FM Vancouver, B.C. CFCF.FM Montroal, Que. CFPL-FM London. Ont. CFRA-FM Ottawa. Ont.
C.L. Lecation

CFRB-FM Toronto, Ont.
CFRC.FM Kingston, Ont.
CFRN-FM Edmenton, Alta. CHEC-FM Lethbridge, Alta. CHFI-FM Toronto. Ont. CHLT-FM Sherbrooke, Que. CHNS.FM Hallfax, N.S. CHRC-FM Quebeo, Que,
CJBR-FM Rimouski, Que,

CJCA. Lin Location
CJCA-FM Edmonton. Alta. CJCB-FM Sydney, N.S.
CJOB.FM Winnipes. Man CJRT-FM TOFOnto, Ont. CJSS-FM Cornwali, Ont. CKCR-FM Kitchener, Ont. CKDA-FM Vletoria, B.C. CKGB-FM Timmins, Ont.
CKLB-FM Oshawa. Ont.
C.L.

Location
CKLW.FM KIngston, Ont.
CKPC.FM Brantford. Ont. CKPR-FW Ft. William. Ónt. CKSF-FM Cornwall, Ont. CKTB-FM St. Catharines, Ont. CKUA-FM Edmenton, Alta. CKVL-FM Verdun, Qua.
CKWS-FM Kingston. Ont.

\section*{U. S. Television Stations}

Territories and passessians fallow stafes. Chan., chonnel number; asterisk (*) indicates educational statian.

\section*{Canadian Television Stations}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline a & C.L. Chan RTA & Vornon Vietoria & C.L. Cho снBC.TV.s CHEK.TY & & Sydney Yarmouth & cjes.ty свнт.s & QUE & \multicolumn{2}{|c|}{QUEBEC} \\
\hline Burmis Calgary & \begin{tabular}{l}
CJLH-TV. 3 \\
снст.тV
\end{tabular} & \multicolumn{3}{|l|}{LABRADOR} & \multicolumn{2}{|l|}{ONTARIO} & \multirow[t]{2}{*}{Carloton} & & \multirow[t]{2}{*}{} \\
\hline umheller & CN.TV.I & \multicolumn{3}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
Bay CFLA.tV 8 \\
MANITOBA
\end{tabular}}} & \multicolumn{2}{|l|}{Barrie CKVR-TV II} & & & \\
\hline & C8XT-TV & & & & \multirow[t]{2}{*}{Eik Lake Elliot Lake} & CISSS \({ }^{\text {cos }}\) & \multirow[t]{4}{*}{\[
\begin{aligned}
& \text { Eitcourt } \\
& \text { Onquiber } \\
& \text { Matane } \\
& \text { Montreal }
\end{aligned}
\]} & CK. & \\
\hline Edmonton & FRN:TV & Baldy Mountain & & & & & & KBL.TV & TV \\
\hline dminstor & CHSA.TY & Winnip & CBWT & \multirow[t]{2}{*}{8} & \multirow[t]{2}{*}{Kapuzkaming Kenora} & CFCL & & & \\
\hline dieine Hat & & & CBWFTV & & & & & & \\
\hline , & & \multicolumn{3}{|l|}{\multirow[t]{4}{*}{\(\begin{array}{cc}\text { NEW BRUNSWICK } \\ \text { Campbollton } & \text { CRCD.TV } \\ \text { Moneton } & \text { CKAM-TV } \\ \text { CBAFT }\end{array}\)}} & \multirow[t]{4}{*}{Kitehener Londoll North Bay Ottawa} & & \multirow[b]{3}{*}{Now Carilsle
Quebeo} & & \\
\hline & 10 & & & & & & & & \\
\hline IT & COLUMBIA & & & & & \[
K G
\] & & & \\
\hline & & & & & & & & & \\
\hline & & \multicolumn{3}{|l|}{\multirow[t]{2}{*}{8alnt John
Upsalguiteh Lake CHSJ.TV 4
CKAM}} & \multirow[t]{2}{*}{Parry Sound} & & & RN.TV & \\
\hline aseont Vallay & \({ }^{\text {chms-TV }}{ }^{\text {CJOCTV }}\) & & & & & CH & \({ }^{\text {Sheremb }}\) & CHLTTY & \\
\hline derby & V-8 & \multicolumn{3}{|l|}{NEWFOUNDLAND} & \multirow[t]{2}{*}{\begin{tabular}{l}
Peterborough \\
Port Arthur \\
Sault Ste. Marle
\end{tabular}} & CHEX-TY & Thret Rivers & & \\
\hline foops Kelowna & V & \multicolumn{3}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{ll}
Argentian & CADX.TV 10 \\
Corner Brook \\
& CHEKYTV \\
\hline
\end{tabular}}} & & & \multicolumn{3}{|l|}{SASKATCHEWAN} \\
\hline & & \multicolumn{3}{|l|}{\multirow[t]{2}{*}{}} & Sioux Lookout & & Carlylo & CKDS-TV-2 & \\
\hline & & & & & Sudbury & & East & CrFB.TV & \\
\hline & - & \multicolumn{3}{|l|}{\multirow[t]{2}{*}{Staphenville CFSN}} & \multirow[t]{2}{*}{Toronto} & FCL-TY & moose fa & CHAB-T & \\
\hline & CBUAT-TV-7 & & & & & & Nipawin & CKBI-TV. & \\
\hline & CHEC.TV.10 & \multirow[t]{2}{*}{\begin{tabular}{l}
Antigoni \\
Halifax
\end{tabular}} & \multirow[t]{2}{*}{CFXU-TV} & \multirow[t]{2}{*}{\[
\begin{aligned}
& 9 \\
& 3
\end{aligned}
\]} & \multirow[t]{2}{*}{WIndser Wingham} & & Prines Albert & CKB1-TV- & \\
\hline der & O & & & & & - & Repina & CFRC-TV & \\
\hline nee & & & cJcbeivol & & \multirow[t]{2}{*}{PRINCE} & DWARD & - & - & \\
\hline Saimon Arm & CHBC.TV. & & & \multirow[t]{2}{*}{} & & & & & \\
\hline & & & & & & & & & \\
\hline ancouver & cbut & 8helburne & свнт- & 8 & Charlott & CFCY-TV & Yorkton & cK08.TY & \\
\hline
\end{tabular}

\section*{World-Wide Short-Wave Stations}

Most international broadcasting is done within frequency limits agreed upon at international conventions. These frequency ranges are listed here, at the right, expressed both in frequency and by meter bands (wave-length).

Reception in the various bands varies according to the time of day and season of the year. Reception in the 60,49 and 41 mefer bands is best at night during the winter months. Reception in the 31 and 25 M . bands is best af night, but all year. Reception in the 19, 16, 13 and 11 M . bands is best during the day, also at night during the summer in the 16 and 19 M . bands. This listing includes only SWBC often heard in the U.S. and Canada, exclusive of those in the continental U.S.

Abbr.: AIR—All India Radio; RAl—Radiotelevisione Italiana; RTF—Radiodiffusion Television Francoise; VOA-Voice of America; RFE—Radio Free Europe. - denotes stations beaming ovening U.S. timel broadcasts to the U.S., \(\dagger\) morning or aftere noon broadcasts, \(V\)-varies.
Kes. Call and Lecetton
3245 YVKT, Caraeas, Ven. 3255 ELBC, Monrovia. Liberia YVaL. El Tigre. Ven. 3265 2FY Georgetown. Br.
3280 W.I.B.8., Grenada
3285 H17T, 8anto
3290 HJCO. Bogote Colombis
3295 YVOG, Trujilio, Ven.
3300 B.H.B.S.. Belizs, Br
3305 YVKX. Caraeas, Ven.
3315 Fort de Franes. Martinique
3316 Freetown, Sierra Leone
3325 HISU. Santo Deminge, D.R.
3326 Kaduna. NIgeria
3355 Y VLC. Valenela, Van.
3366 Acera. Ghana
3375 H15B, 8 antiano. D.R.
3395 YVOd, Merida, Ven.
4630 HCGBI, Quito, Eev.
4630 HCGBI, Quito, Eeu.
4725 Rangeon. Burma
4763 HJEF. Cali, Col.
4770 ELWA, Monrovia, Lib. 4770 YYMWi, Punto Fiji, Von. 4780 YVLA, Valencia, Von. 4790 YVQN', Puerto La Cruz.
\(4 t 05\) ZYS8., Manaus, Braz. Ven 4810 YVMG, Maraealbo, Ven 4830 YYOA, San Cristobal.

Von.

Kes. Call and Location 4980 YVM Q, Barquisimato. 4995 CRER2, Luanda, Ansela 5010 HCRCX, Quito. Eu. 5010 St. Geerges, Windward Isi. 5020 HJFW, Manizalas, Col. 3020 Niamey, Niger Rep. 5030 Y VKM, Caracas, Von. 5040 Y YMA, Maraealbo, Vena 3050 YVKD. Caraeas. Ven 5075 HJGC Bonta, Col. 5875 Taguelgalpa, Hond. 3952 TGNA. Guatomala, Guat 5954 TIQ. Puerto Limen, C. R. 5960 HJCF. Bogota. Col. 5980 v TGAR. Guatemala, Guat. 5980 4VB, Port au Prines, Halti 5985 Hilvertum, Neth.
5990 TG/AA, Guatomala
5990 Habana, Cuba
5995 Fort-do-France, Mart.
6000 Radlo Amerleas
6005 RIAS, Berlin, Ger.
6010 XEO1, Mexico Clty, Mexieo
6015 PRAB, Roelfe, Braz.
\(6015 v\) Habana, Cuba
6020 HIlversum Neth.
6020 Khabarovik, US8R
6025 Kuala Lumpur, Malaya
6025 Lisben, Port.
6030 Baghdad. Irag
6035 Ranyoon, Burma
6035 HRTL, Teguelgalpa, Hond. WHITE'S RADIO LOG
6035 HRTL, Tegueigalpa, Hond, 1 WHITE'S RADIO LOG

Kes. Call and Location
6115 ZYC7, Rlo do Jan., Braz.
6120 LRXI, Buenos Alres
6120 AVEH, Cap Haltlen, Halt 6130 PBC L massel Cyprus 6130 Port Moresby, New Guine 6135 Papeoto, Tahit!
6140 VLW6, Porth, Aus.
G145 RTF. Allouls, France
6145 r PRL. Allouls, Fio do Jance, Braz.
6150 BBC. London, Eng.
6150 BBC. London,
6155 Wlen, Austria
6155 FEN, Tokyo, Japan
6160 HJKJ, Bogota, Col.
6160 Algiers, Algoria
bl60 Salgon, S. Vietnam
6165 HEK3, Born, Switz,
6170 BBC, Limassol, Cyprus
6170 Singapore, Sing.
6170 VOA, Tangiers. Moroce
6175 RTF, Allouls, France
6185 Lisbon, Port.
6185 HJCT, Bogota, Col. 6195 HJEZ, Gati, Col
6195 BBC, London, Eng.
6195 Pyongyang. N. Korea
6195 Pyongyang. N. Kor
6195 Andorra, Andorra
6200 4VHW, Port-au-Prince, Halt
6305 Andorra, Andorra
7095 V Tehran. Iran
7105 Madrid Spaln
7110 BBC, London, England
120 BBC,
7120 BBC, London. England
7135 Talpeh, Talwan
7145 Bamako. Mali
7150 Moscow, U.S.S.R.
7155 VOA, Tanglers, Mor.
7160 RTF. Paris, France
7165 RFE, Germ.
7170 Algiers, Alg.
7180 Baghdad, Iraq
7.180 Moscow, U.S.S.R.
7.180 Moscow, U.S.S.R.
Z 185 BBC, Lindon, Eng.

7185 BBC, London, Eni.
7185 Paradys, So. Africa
7185 Paradys, So Africa
7193 Bucharost, Roumanda
7200 R. Malaya, Sing.
7205 VOA, Salonika, G
7215 Trans World Radio, Monaco
7220 VLD7, Meibourne, Aus.
220 Budapest, Hung.
7240 B8C. London, Eng.
7240 RTF, Paris, Franco
7250 BBC, London, Eng.
255 Sofia, Buls.
7265 Saigon, Vietnam
7275 Motola, Sweden
275 RAI, Rome, It
7285 Ankara, T
7290 Moscow, U.S.S.R.
7290 RAI, Róme, It.
7295 Makassar. Colebes
7295 RFE, Gor.
7340 Moseow, U.S.S.R.
\(7398 v\)
Oamascus, U.A.R.
7480 Poking, China
8650 YNMS, Leon, Nic
8016 Bolrut, Lebanon
9009 Tel Aviv. Israel
9360 COBC, Habana, Cuba
9360 v Madrid, Spain
9380 V Madrid, Spain
9410 BBC, London, Eng.
9480 Peking. China
9480 Poking, China 9485 HisU, Santo Domingo, D.R.
9500 Magadan. U.S.S.R
9505 MRSE22, S.S.S.R. Raulo, Braz.
9505 Rabat, Mor
9505 HOLA, Colon, Pan.
9505 Bolprade, Yugoslavia
9510 London, England
5510 London, England
9515 RAI, Caltanissetta. It,
9515 XEWW, Mexico, DF, Mex
9520 VOA, Tangler, Mor.
9520 Copenhagen, Den. Guinea
9520 Port Moresby, New Guin
9520 OAXBE, Iquitos, Poru
9520 OAX8E, Iquitos, Poru
9525 NHK, Tokyo, Japan
9525 Warsaw, Poland
9530 AlR, Delhi, India
9530 VDA, Courier, Rhodes
9530 YVM1Z Maracaibo, Ven.
9535 VOA, Manila, P.I.
9535 HER4, Bern, Switz.
9540 ZL2. Wellington
9540 Khabarovsk, U.S.S.R.
545 ZYS43, Curitiba, Braz 9545 HEDS. Bern. Switz.
9550 Prague. Czecho.
9555 Y 95 , London. Eng.
9555 YSS, San Salvador, E. S.
9555 XETT, Moxico City, Mex
9560 Colomba, Ceylan
9563 OAX4R, Lima,

Kes. Call and Location
9565 2YK3. Reelfe, Braz.
9565 Radio Liberty, Ger
9575 ZYZ27, Rlode Jan, Braz
9580 VLA9. Melbourne, Aus.
9580 BBC, London, Eng.
9585 ZYR56, Sao Paulo, Braz.
9585 RTF, Allouls, France
9585 Dlakarta, Indonesia
9590 Hilversum, Neth.
9590 ELW \(A_{\text {, }}\) MOnroyia, Liberia 9595 J023, 'Takyo, Japan 9600 Tashkent, U.S.S.R. 9600 BBC, London, Eng. 960 XEY, Mexlco, D F Mexileo 9600 CE960', Santlápo, Chile 9605 Cologne, Ger.
9610 XO Porthe
9610 ZYCB, Rio de Jan., Braz.
9610 Oslo, Norway
\({ }_{9615}^{9610}\) OAXBC, Iquitos, Poru
9620 ZYR96, Sao Paulo, Braz.
9620 Moseow, U.S.S.R
9620 Salgon, Viotnam
9625 OAX8K, Iquitos, Peru
\(9630 v\) CR6RL, Luanda, Ang.
9635 2YR83. Aparecida, Braz.
9640
9640
Cologne, Germany.
9640 Cologne, Gorm
9640 Accra, G hana
9640 HLKS, Seonl, Korea
9645 TIFC, San Jose, C.R.
9650 BBC, Limassol, Cyprus
9650 Moscow, U.S.S.R.
9655 Amman. Jordan
9655 Radio Free Europe, Ger.
9660 LRX, Buenos Aires, Arg.
\({ }_{9660} 9660\) LRX, Buenos Aires, Arg
\({ }_{9660}\) RadIo Liberty Ger.
9660 Radlo Liberly. Ger
9660 Moseow, U.S.S.R.
9667 TGNB, Guatemala, Guat. \(\quad\)
9670 COCQ, Havana, Cuba
9675 BBC, Mondon,
9675 BBC, London, Ene.
9685 NLHg, Meloourne, Aus.
9680 XEQQ, Mexico City, Mex.
9680 KEQa, Mexico
9680 Lisbon, Port.
9685 Mavana, Cuba
9690 LRA32, Buenos Aires.
9690 BBC, London, Eng.
9690 BBC, Singapore
9700 Lofla, Buldilie, Congo Rep.
9700 Leopoldvilie, Congo Rep,
9700 CE970, Santiago
9705
Kabul, Afohan.
9705 Kabul , Afghan.
9710 BBCC , London. Eng.
9710 RAI, Roma. it.
9720 Mosco \({ }_{2}\) U.S.S. R.
9720 Moscow.
9725 Europe London, England
9725
9730
Brazzaville, Congo Rep.
9730 Lelpzig. E, Ger.
9730 D2H7, Manita, P.I.
\({ }_{9735}\) HI2T, Santo Domingo, D.R. 9740 Lisbon, Port.
9740y LR57. Buenos Aires. Ara
7704 LR57, Buenos Aires, Arg.
9745 HCJB B
9755 ZYW 23, Goiania, Braz.
9755 RTF, Paris, France
9750 Habana, Cuba
9760 BBC , London. Eng.
9770 Brazzavilie, Congo Riop.
4VEH. Cap Hatten, Haitl
\({ }_{9785}^{972}\) Dekio, Egyt
9795 Cairo U. A R
9800 Peking, China
9815 St G8orges windward isi
9825 BBC London Eng \({ }^{\circ}\)
9825 BBC. London, Eng. \({ }^{9833}\) Budapest. Hung.
9840 Hanai, N. Vietnam
9865 D Jakarta, Indonesia
9865 DBakarta, Indonesia
9915 BBC. London, Eng.
9920 Pekng, China
9973 Peking, China
10530 Alma Ata, U.S.S.R.
10910 Ulan Bator, Outer Mongalla
11290 Peking, China
1600 Peking, China
1672 Karachi, Paklstan
11700 TGQB, Quetzatenango, Gua.
11705 NHK, Tokyo, Japan
11705 Horby, Sweden
11710 VLBil, Melbourne, Aus. \(\dagger\) 11710 AlR, Deihi, India
11710 Djakarta, Indonesia
11720 BBC, Limassol, Cyprus
11720 Brusisels, Belgium
11725 Brazzavilie, Congo Rep.
11725 VOA, Colombo, Ceylon
11725 Prague, Czecho.
11725 Prague, Czecho.
11730 Hilversum, Neth.
11730 LRA35, Buenos Arles, Arg.
11735 Rabat,' Moroceo Arles, Ar
11735 Khabarovsk, U.S.S.R.
11740 HVJ , Matican Stato

Kes. Call and Location
11740 CEll74, Santiago, Chile
11740 Peking, China
11745 RFE, Europe
11745 Calro, Egypt
11750 BBC, Lonuon. Eng.
11750 BBC, Singaporo
11750 FEN, Tokyo, Japan
11755 RFE, Europe
11755 Hilversum, Neth.
11755 Leopoldvilite, Congo Rep.
il760 VLBII, Melbourne. Aus.
11760 Lourenco Marques. Moz.
11765 ZYB8, Sao Paulo, Braz.
11765 CP39, La Paz, Bolivia
11765 Naven, E, Germany
11770 BBC, London. Env.
11770 VOA, Munich. Germany
\(11775 \mathrm{ZYZ28}\), Rio de Jan., Braz.

11780 NHK, Tokyo, Japan
11785 D Jakarta, Indon.
11785 Djakarta, Indon.
11785 VOA, Mololos, P.I.
11785 VOA, Mololos, P.I
11795 Cologne, Ger.
11795 D Jakarta, Indon
11795 Djakarta, Indo
\(11800 v\) Warsaw, Poland
11805 v RAI, Rome, it.
1810 VLCII, Melbourne, Aus. \(t\)
11810 Bucharest, Rom. 1815 Paradys. S. Africa
\({ }_{11820}\) Peking, China
11820 BBC. Landon, Eng.
1820 XEBR. Hermosillo, Mex.
11825 ELWA, Monrovia, Lib.
11825 ELWA, Monrovia, Lib.
1885 Papooto, Tahitl
11830 Algiers, Algeria
11830 VOA, Colombo, Coylon
11830 montovideo, Uru.
lis30 Moning. Chilna
11840 VoA. Tangier, mor
11840 Lisbon, Port. -
11840 Hanol, N. Vietnam
11845 RTF, Allouls, France
11845 Karachi, Pak
11850 Sona, Bulg.
II850 Brussels, Belgium
II850 Brussels, Bolgium
II850 Khabarovsk, U.S.S.R.
1850 Khabarovsk, U.S.S.R.
I1850v 2PA3, Asunclon. Paraguay
il 855 Radio Free Europe, Ger.
II855 Radio Free Europe, Ger
Il855 DZH8, Manila, P.I
II860 BBC, London, Eng.
11860 BBC, London, Eng.
11865 PRA8, Recife, Braz.
11865 MER5, Bern. Switz
11865 MERS, Bern, Switz
11870 Moscow. U.S.S.R.
11870 Moscow, U.S.
11875 Mabana, Cuba
11875 NHK, Tokyo, Japan
11875 NHK, Tokyo, Japan
11875 2YN32, Salvador, Braz.
II880 XEHH, Mexico City, Mex.
II885 Karachi, Pak.
11885 Radio Froe Europe, Ger
1885 Radio Froe Europo, Gor
if 890 B8C, London, England
if 895 Dakar. Mali Fed.
II895 Radlo Fros Europo
if900 CEII90, Valparaiso, Chile
1905 RAI. Rome Italy Chile
11905 RAl. Rome, Italy -
11910 Budapest. Hung
1910 Budapest, Mung
11910 Bangkok. Thai.
li915 HCJB, Quito E
1915 Cairo Egypt
11920 DxF2 Manil
II920 DXF2, Manila, P.I
II925 ZYR78. Sao Paulo. Braz.
11925 2YR78. Sao Paulo, Braz.
11925 HLK6, Seoul, Korea \(\dagger\)
l1925 Warsaw, Pol.
11925 Tashkent, U.S.S.R.
11930 BBC, London. Eng.
I 1935 Radio Liberty, Gor.
11940 2PA5. Encarnation, Par.
I1940 AFRTS, Munich, Ger.
11940 AFRTS, Munic
I 1945 Peking, China
11945 BBC, London, Eng.
11945 Cologne, cer Arab
I 1950 Jidda, Saud Arab.
11950 Sal gon S. Vietnam
11955 BBC, London. Eng.
| 955 B8C. Singapore
11960 CEli96. Santiago, Ch.
11960 Conakry, Guimea
II965 Radlo Liborty, Ger.
11975 Peking. China
i 1975 ELWA, Monrovia, Liberla
11980 Moscow, U.S.S.R.
11980 Prague, Czecho.
12030 Moscow. U.S.S.
12055 Poking, China
12095 -BEC. London, Eng.
15060 Peking, China
15080 Melbourne, Australia
\(\mid 5085\) St. Georges, Windward Isl.
15095 Paradye Bo Alrica BWi
15085 Paradys, So. Africa
15095 Peking, China
15110 XERR, Moxico, D. F., Mex.
15110 XERR, Moxico, D. F.; Mex.
1515 HCJB, Quito, Ecuador -
15115 MCJB, Quito,
\(15!15\) Poking. China
15115 Poking. China
15120 Colombo, Ceyion
ISI 20 RAI, Rome, Italy
\(15!20\) Warsaw. Poland \(t\)
\(15!20\) Warsaw, Poland \(\uparrow\)
15120 HVJ. Vatican City
15120 HVJ, Vatican Ci
15125 Seoul, Korea

Kes, Call and Location
15125 Lisbon, Portugal -
I5I30 RTF. Allouls, France
15130 VOA, Melolos, P. I.
15135 PRR23, Sao Pall
15135 PRB23, Sao Paulo, Braz.
15135 NHK. Tokyo, Japan
15135 Radio Fres Europe
I5I35 Radio Free Europe. Port,
15140 Peking. China
5140 B BC, London. Eng.
I5145 2YK 33 , Recife, Brazll
15145 Radio Free Europe, Port.
15145 Radio Free Eu
\(\mathbf{1 5 1 5 0}\) Peking, China
15150 Peking, China
15153 OXAT, Lima, Pery
15155 2YB9, Sao Paulo, Brazil
15155 ELWA, Monrovia, Libe.
15155 Harby. Sweden
I5155 VOA, Melolos, P. I.
I5160 RTF, Allouls, France
15160 RTF, Allouls, France
15160 XEWW, Mexico City, Mex.
15160 Ankara, Turkey
15165 ZYN7, Fortaloza, Braz.
15165 Copenhagen, Denmark
I5165 Damascus, Syria
15170 Tromso, Norway
15170 Radio Free Europe, Port.
15175 Luxembourg, Lux.
15175 Oslo. Norway
15175 Oslo, Norway
\(\$ 5180\) Melbourne, Australla
15185 VOA, Poro, P. I.
15185 Radio Free Eurone, Port.
15190 Brazzaville, Congo Rep.
15190 Helsinki. Finland 1
15190 Moscow. USSR
15195 Radio Frea Europe, Ger.
15205 XESC, Mexico Cily, Mex.
\(i 5210\) VOA, Melolos, P. I.
15210 2PA7. Asuncion. Paraguay
15215 Radio Free Europe, Port.
15215 VOA, OkInawa
I 5220 Hilversum. Neth. \(\uparrow\)
I 5225 Taipel, Tailwan. China
15230 VOA, Colombe, Ceylon
i 5230 BBC, London, Eng.
15235 Belrut. Lobanon
15235 NHK. Tokyo, Japan
I 5240 VLB I 5 . Melbourthe, Aus,
15240 Morby, Swedon
15240 Moscow, USSR
I 5240 Belgrade. Yugoslavia
I5245 ZYE21, Belom. Brazil
15245 Leopoldville, Congo Rep.
I5250 VDA, Mololos. P. I.
15250 Bucharest, Rumania ©
I 5255 Radlo Froe Europe,
I5260 FEN, Tokyo, Japan
15260 FEN, Tokyo, Japa
15265 VDA. Munich, Ger.
15275 Cologne, Germany
15275 Warsaw, Poland \({ }^{\text {it }}\)
15280 2L4, Wellington, N.Z.
15280 ZL4, Wellington
I 5285 Prague. Czecho.
15290 VOA, Tanglers, Mor.
15290 v Mabana, Cuba
15295 Beirut, Lebanon
I5295 PRL8, Rlo de Jan., Brazil
15295 PRL8, Rlo de Jan.,
15295 NHK, Tokyo, Japan
15295 Cologne, Germany
i5300 88C. London, Eng. †
15300 D2H9, Manila, P.I.
15300 Bucharest, Roumanila
15300 v Lourenco, Marques, Moz.
15305 Radio Liborty. Ger.
15310 AlR. Delhi, India
15315 V LCis, Meibourne, Aus
15325 ZYR228. Sao Paulo, Braz.
15330 VOA. Munlch, Garmany
15530 VOA, Tangiers, Mor.
15335 VOA, Poro, P. I.
15340 Radio Liberty. Giermany
I5340y Habana, Cuba
15345 Talpel. Taiwan, Chlna
15345 Rabat. Moroceo
15350 Luxembourg, Lux.
15355 Radio Free Europe, Port.
153702 YC9. Rlo de Jan. Braz
15370 Radlo Liberty, Germany

\title{
WHERE You Train is as Important As Your Decision to Train
}
 Electronics is a growing and expanding industry. That's why so many ambitious men are training for carecrs in this exciting ficld. They recognize the opportunities to fill in interesting and important po. sitions. But where a man trains and how the school of his eloice teaches the many fields of ElectronicsAutomation, Radio-Television . .. how it encourages him to reach his goals and realize his ambitions . . is most important to his success.

This is a fast changing world. A school offering Electronies courses must keep pace. That's why NRI-with nearly 50 years of specialized experience-now offers eight choices of training. Seleet the course of most interest to you and receive the kind of home-study training that prepares you for a specialized carper Nh1's large staff of specialists is always on the job keeping your course matcrial up-to-date . . . helping you earn your way while you train . . assisting you with job placement. In short, NRI is qualified to help you grow.

\section*{Special Training Equipment Included}
 The NRI "learn-by practiee" method is the timeproved way to lietter pay. It makes training easier, faster, better. Most NRI courses include-at no ex. tra cost-special training equipment to give slop and laboratory experience in your own home. All equipment is yours to keep.
Projects you luuild, experiments you perform, make NRI lessons come to life. Complex sulbjects take on real meaning. You measure voltage and current in circuits you build yourself. You use a Vacuun Tube Voltmeter which you construct. Later on, you progress to more involved experiments. If you like working with your hands, you'll enjoy learning Electronics with NRI.
Oldest and largest School of its kind
NRI training of the 60 's is based on nearly half a century of experience gained from training thousants of men like yourself for new eareers. NRI has earned the confilence of students, graduates and the Electronics industry. They all recognize NRI training material as an outstanding educational value. And as the oldest and largest Radio-Television-Electronies home-study school, NRI can supply training at reasonalle cost. Mail the postage.f ree card today for facts on the school, on opportunities in Electronics, on monthly payment plans and speecial Trial Enrollment Offer. NRI TRAINING, Washington 16, D. C.

BACKED BY NEARLY 50 YEARS EXPERIENCE TRAINING MEN FOR SUCCESS EY HOME STUDY

\section*{JOIN THE THOUSANDS WHO TRAINED AT HOME FOR NEW CAREERS WITH NRI}

"I want to thank NRI for making it all possible," says Robert L. L'Heu-eux of Needham, Mass., who sought our job consultant's advice in making applications and is now an assistant Field Engineer in the DATAmatsc Div, of Min-neapolis-Honeywell, working on data systems.
"I have gone ahead financially ever since I en. rolled with NRI," writes Gerald W Kallies. now a chicf Instrument Technician of Rio Al. gom Nordic cerenium mines and partetime TV engineer for CKSO-TV. Eltiott Iake, Ont. He enrolled with NRI on fizishing high school.

His own full-time Radio-TV shop has brought steadily rising income to Harlin C. Robertson of Oroville, Calif. In addition to employing a full-time technician, two NRI students work for him part-time. He remarks about NRI training. "I think it's tops!"

\section*{NOW 8 WAYS to Assure Advancement or Turn Your Hobby Into a New Career}

No matter how much or how little education you have, one of NRI's eight career-training home-study courses can help you toward a better future in the great and growing fields of Automation-Electronies, Radio-Television. There has never been a time when ambitious men with specialized Electronics know-how were as much in demand as today. Industries, businesses, povernment, the military all need men with practical Electrontes training to install, operate, service and supervise equipment. Automation continues to eliminate jolss for unskilled labor as fast as skilled technicians are available to run Electronically controlled machines.

\section*{YOU TRAIN AT HOME WITH THE LEADER \\ }

Good jobs await Communications technicians, since broadcasting now means more than entertairment; becoming an essential in trucks, cars, trains. planes, ships, etc. In the home, Color TV has come of ape along with FM stereo multiplexing and increasing popularity of Hi-fi; television and radio means more opportunities for Service Technirians in spare time or full time businesses of their own. NRI training has been tailored to meet present and future needs of Electronics, Communications and Servicing. Check the field of most interest to you and mail the postage.free card now. NRI TRAINING, Washington 16, D. C.

\section*{SEF OTHER SIDE}

CUT OUT AND MAIL CARD NOW!

64-PAGE CATALOG

No stamp necessary NRI pays postage

NRI Training
Washington 16, D. C.
Please send your catalog. I am interested in training checked below. (No salesman will eall.)

Name \(\qquad\) Age \(\qquad\)
(Picese Print)
\begin{tabular}{|c|c|}
\hline & City \\
\hline
\end{tabular}

\section*{INDUSTRIAL-MILITARY ELECTRONICS}

Learn Principles, Practices, Maintenance of Electronic equipment tused today in busincss, industry, defense. Covers Electronic controls and measurement, computers, servos, telemetry, multiplexing, many other subjects.

\section*{RADIO AND TELEVISION SERVICING}

Learn to service and maintain AM-FM Radios, TV sets, Stereo Hi.fi, PA systems, ete. A profitable, interesting field for part-time or full time business of your own.

\section*{3}

\section*{COMPLETE COMMUNICATIONS}

A compreliensive training course for men seeking carcers operating and maintaining transmitting equipment in Radio.TV Broadeasting or mobile, marine, aviation communieations. Prepares you for FCC License.

\section*{FCC LICENSE}

Prepares you quickly for First Class License exams. Every conmunications station must have one or more FCC-licensed operators. Also valuable for Service Technieians. You train at home.

\section*{MOBILE COMMUNICATIONS}

Training in installation and naintenance of mobile equipment and associated base stations like those used by fire and police, taxi companies, ete. Prepares you for First Class FCC License exams.

\section*{MARINE COMMUNICATIONS}

Shiphoard transmitting equipment, direction finders, depth indicators, radar are all covered in this course. You prepare for your First Class Radiotelephone License with Radar Endorsement.

\section*{- AVIATION COMMUNICATIONS}

For men who want careers working with and around planes. Covers direction finders, ranges, markers, loran, shoran, radar, landing systems, transmitters. Prepares you for FCC License exams.

\section*{MATH FOR ELECTRONICS}

From basic arithmetic review to graphs and electronic formulas in one complete "short course" package of five carefully prepared texts. Quick, complete and low in cost.```

[^0]: POLY PAKS
 P. O. Box 942X

 So. Lynnfield, Mass.

[^1]: Britannica (Schools
 14 East Jackson Boulevard
 NO OBLIGATION. ACT TODAY Chicago 4, Illinois
 RTV 2
 Please send me full details on the course(s) I have checked. l understand there is no obligation, and no salesman will call.
 \square Basic Mathematics \square Whole Numbers and Numerals
 \square Algebral \square Algebrall \square Plane Geometry

 Solid Geometry
 Algebra II \square The L \square Analytic Trigonometry \square introductory Caiculusi \& 11 - Management Decision Making [] Trigonometry \square Verbal Problems \square Introduction to Sets, Inequalities and Functions \qquad Descriptive Statistics

 Occupation
 Address \qquad
 City
 Zone State

